Abstract

We present measurements of the light-scattering phase function of selected carbon and ash particles in the geometric-optics regime in which the particle diameter is much larger than the wavelength of the light source. Measurements were performed on both single particles and particle ensembles. This was accomplished with two separate methodologies: an electrodynamic levitator for single-particle measurements and a particle feeder for the ensemble measurements. For each methodology, two irradiation sources were utilized: an argon-ion laser (λ = 496 nm) and a xenon lamp. Results of the normalized phase functions are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Perrin, P. L. Lamy, “Light scattering by large rough particles,” Opt. Acta 30, 1223–1244 (1983).
    [CrossRef]
  2. T. Lemaire, “Contribution à l’etude de la diffusion électromagnétique par des particules diéletrique dans le cadre d’approximations hautes et basses fréquences,” Ph.D. dissertation (University of Aix-Marseilles II, Aix-Marseilles, France, 1990).
  3. C. Bourrely, P. Chiappetta, T. Lemaire, “Electromagnetic scattering by large rotating particles in the eikonal formalism,” Opt. Commun. 70, 173–176 (1989).
    [CrossRef]
  4. J. I. Peltoniemi, K. Lumme, “Light scattering by closely packed particulate media,” J. Opt. Soc. Am. A 9, 1320–1326 (1992).
    [CrossRef]
  5. J. I. Peltoniemi, K. Lumme, K. Muinonem, W. M. Irvine, “Scattering of light by stochastically rough particles,” Appl. Opt. 28, 4088–4095 (1989).
    [CrossRef] [PubMed]
  6. K. Muinonem, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–647 (1996).
    [CrossRef]
  7. J. H. P. Haas, M. Tamura, W. L. van de Kamp, Assessment of the Combustion of “out of specification coals.” Report on Low Quality, Low Price “Battle” Coals. IFRF Research Rep. IFRF Doc. F37/y/41 (International Flame Research Foundation, IJmuiden, The Netherlands, 1999).
  8. C. Sasse, “Development of an experimental system for optical characterization of large arbitrarily shaped particles,” Rev. Sci. Instrum. 64, 864–869 (1993).
    [CrossRef]
  9. S. Arnold, N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56, 2066–2069 (1985).
    [CrossRef]
  10. E. J. Davis, Surface and Colloid Science, E. Matijevic, ed. (Plenum, New York, 1987), Vol. 14, pp. 1–81.
    [CrossRef]
  11. R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
    [CrossRef]
  12. Y. Weiss, E. Bar-Ziv, “Further development of the electrodynamic chamber and non-uniform shrinkage during oxidation of char particles,” Combust. Flame 95, 362–373 (1993).
    [CrossRef]
  13. X. Zhang, E. Bar-Ziv, “Theoretical analysis and measurement of 3-D electrodynamic field: direct measurement of 3-D force balance applied on a suspended particle,” Meas. Sci. Technol. 7, 1713–1720 (1996).
    [CrossRef]
  14. B. Zhao, I. Kantorovich, E. Bar-Ziv, “A new method for studying the degradation of polymers at high temperatures,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 2865–2871.
    [CrossRef]

1996 (2)

K. Muinonem, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–647 (1996).
[CrossRef]

X. Zhang, E. Bar-Ziv, “Theoretical analysis and measurement of 3-D electrodynamic field: direct measurement of 3-D force balance applied on a suspended particle,” Meas. Sci. Technol. 7, 1713–1720 (1996).
[CrossRef]

1993 (2)

Y. Weiss, E. Bar-Ziv, “Further development of the electrodynamic chamber and non-uniform shrinkage during oxidation of char particles,” Combust. Flame 95, 362–373 (1993).
[CrossRef]

C. Sasse, “Development of an experimental system for optical characterization of large arbitrarily shaped particles,” Rev. Sci. Instrum. 64, 864–869 (1993).
[CrossRef]

1992 (1)

1989 (2)

J. I. Peltoniemi, K. Lumme, K. Muinonem, W. M. Irvine, “Scattering of light by stochastically rough particles,” Appl. Opt. 28, 4088–4095 (1989).
[CrossRef] [PubMed]

C. Bourrely, P. Chiappetta, T. Lemaire, “Electromagnetic scattering by large rotating particles in the eikonal formalism,” Opt. Commun. 70, 173–176 (1989).
[CrossRef]

1986 (1)

R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
[CrossRef]

1985 (1)

S. Arnold, N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56, 2066–2069 (1985).
[CrossRef]

1983 (1)

J. Perrin, P. L. Lamy, “Light scattering by large rough particles,” Opt. Acta 30, 1223–1244 (1983).
[CrossRef]

Arnold, S.

S. Arnold, N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56, 2066–2069 (1985).
[CrossRef]

Bar-Ziv, E.

X. Zhang, E. Bar-Ziv, “Theoretical analysis and measurement of 3-D electrodynamic field: direct measurement of 3-D force balance applied on a suspended particle,” Meas. Sci. Technol. 7, 1713–1720 (1996).
[CrossRef]

Y. Weiss, E. Bar-Ziv, “Further development of the electrodynamic chamber and non-uniform shrinkage during oxidation of char particles,” Combust. Flame 95, 362–373 (1993).
[CrossRef]

R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
[CrossRef]

B. Zhao, I. Kantorovich, E. Bar-Ziv, “A new method for studying the degradation of polymers at high temperatures,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 2865–2871.
[CrossRef]

Bourrely, C.

C. Bourrely, P. Chiappetta, T. Lemaire, “Electromagnetic scattering by large rotating particles in the eikonal formalism,” Opt. Commun. 70, 173–176 (1989).
[CrossRef]

Chiappetta, P.

C. Bourrely, P. Chiappetta, T. Lemaire, “Electromagnetic scattering by large rotating particles in the eikonal formalism,” Opt. Commun. 70, 173–176 (1989).
[CrossRef]

Davis, E. J.

E. J. Davis, Surface and Colloid Science, E. Matijevic, ed. (Plenum, New York, 1987), Vol. 14, pp. 1–81.
[CrossRef]

Fast, P.

K. Muinonem, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–647 (1996).
[CrossRef]

Haas, J. H. P.

J. H. P. Haas, M. Tamura, W. L. van de Kamp, Assessment of the Combustion of “out of specification coals.” Report on Low Quality, Low Price “Battle” Coals. IFRF Research Rep. IFRF Doc. F37/y/41 (International Flame Research Foundation, IJmuiden, The Netherlands, 1999).

Hessel, N.

S. Arnold, N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56, 2066–2069 (1985).
[CrossRef]

Irvine, W. M.

Kantorovich, I.

B. Zhao, I. Kantorovich, E. Bar-Ziv, “A new method for studying the degradation of polymers at high temperatures,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 2865–2871.
[CrossRef]

Lamy, P. L.

J. Perrin, P. L. Lamy, “Light scattering by large rough particles,” Opt. Acta 30, 1223–1244 (1983).
[CrossRef]

Lemaire, T.

C. Bourrely, P. Chiappetta, T. Lemaire, “Electromagnetic scattering by large rotating particles in the eikonal formalism,” Opt. Commun. 70, 173–176 (1989).
[CrossRef]

T. Lemaire, “Contribution à l’etude de la diffusion électromagnétique par des particules diéletrique dans le cadre d’approximations hautes et basses fréquences,” Ph.D. dissertation (University of Aix-Marseilles II, Aix-Marseilles, France, 1990).

Longwell, J. P.

R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
[CrossRef]

Lumme, K.

Muinonem, K.

K. Muinonem, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–647 (1996).
[CrossRef]

J. I. Peltoniemi, K. Lumme, K. Muinonem, W. M. Irvine, “Scattering of light by stochastically rough particles,” Appl. Opt. 28, 4088–4095 (1989).
[CrossRef] [PubMed]

Nousiainen, T.

K. Muinonem, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–647 (1996).
[CrossRef]

Peltoniemi, J. I.

Perrin, J.

J. Perrin, P. L. Lamy, “Light scattering by large rough particles,” Opt. Acta 30, 1223–1244 (1983).
[CrossRef]

Sarofim, A. F.

R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
[CrossRef]

Sasse, C.

C. Sasse, “Development of an experimental system for optical characterization of large arbitrarily shaped particles,” Rev. Sci. Instrum. 64, 864–869 (1993).
[CrossRef]

Spjut, R. E.

R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
[CrossRef]

Tamura, M.

J. H. P. Haas, M. Tamura, W. L. van de Kamp, Assessment of the Combustion of “out of specification coals.” Report on Low Quality, Low Price “Battle” Coals. IFRF Research Rep. IFRF Doc. F37/y/41 (International Flame Research Foundation, IJmuiden, The Netherlands, 1999).

van de Kamp, W. L.

J. H. P. Haas, M. Tamura, W. L. van de Kamp, Assessment of the Combustion of “out of specification coals.” Report on Low Quality, Low Price “Battle” Coals. IFRF Research Rep. IFRF Doc. F37/y/41 (International Flame Research Foundation, IJmuiden, The Netherlands, 1999).

Weiss, Y.

Y. Weiss, E. Bar-Ziv, “Further development of the electrodynamic chamber and non-uniform shrinkage during oxidation of char particles,” Combust. Flame 95, 362–373 (1993).
[CrossRef]

Zhang, X.

X. Zhang, E. Bar-Ziv, “Theoretical analysis and measurement of 3-D electrodynamic field: direct measurement of 3-D force balance applied on a suspended particle,” Meas. Sci. Technol. 7, 1713–1720 (1996).
[CrossRef]

Zhao, B.

B. Zhao, I. Kantorovich, E. Bar-Ziv, “A new method for studying the degradation of polymers at high temperatures,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 2865–2871.
[CrossRef]

Appl. Opt. (1)

Combust. Flame (1)

Y. Weiss, E. Bar-Ziv, “Further development of the electrodynamic chamber and non-uniform shrinkage during oxidation of char particles,” Combust. Flame 95, 362–373 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

K. Muinonem, T. Nousiainen, P. Fast, K. Lumme, J. I. Peltoniemi, “Light scattering by Gaussian random particles: ray optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 55, 577–647 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

X. Zhang, E. Bar-Ziv, “Theoretical analysis and measurement of 3-D electrodynamic field: direct measurement of 3-D force balance applied on a suspended particle,” Meas. Sci. Technol. 7, 1713–1720 (1996).
[CrossRef]

Opt. Acta (1)

J. Perrin, P. L. Lamy, “Light scattering by large rough particles,” Opt. Acta 30, 1223–1244 (1983).
[CrossRef]

Opt. Commun. (1)

C. Bourrely, P. Chiappetta, T. Lemaire, “Electromagnetic scattering by large rotating particles in the eikonal formalism,” Opt. Commun. 70, 173–176 (1989).
[CrossRef]

Rev. Sci. Instrum. (3)

C. Sasse, “Development of an experimental system for optical characterization of large arbitrarily shaped particles,” Rev. Sci. Instrum. 64, 864–869 (1993).
[CrossRef]

S. Arnold, N. Hessel, “Photoemission from single electrodynamically levitated microparticles,” Rev. Sci. Instrum. 56, 2066–2069 (1985).
[CrossRef]

R. E. Spjut, E. Bar-Ziv, A. F. Sarofim, J. P. Longwell, “Electrodynamic theromogravimetric analyzer,” Rev. Sci. Instrum. 57, 1604–1610 (1986).
[CrossRef]

Other (4)

B. Zhao, I. Kantorovich, E. Bar-Ziv, “A new method for studying the degradation of polymers at high temperatures,” in Proceedings of the Twenty-Seventh International Symposium on Combustion (Combustion Institute, Pittsburgh, Pa., 1998), Vol. 27, pp. 2865–2871.
[CrossRef]

E. J. Davis, Surface and Colloid Science, E. Matijevic, ed. (Plenum, New York, 1987), Vol. 14, pp. 1–81.
[CrossRef]

J. H. P. Haas, M. Tamura, W. L. van de Kamp, Assessment of the Combustion of “out of specification coals.” Report on Low Quality, Low Price “Battle” Coals. IFRF Research Rep. IFRF Doc. F37/y/41 (International Flame Research Foundation, IJmuiden, The Netherlands, 1999).

T. Lemaire, “Contribution à l’etude de la diffusion électromagnétique par des particules diéletrique dans le cadre d’approximations hautes et basses fréquences,” Ph.D. dissertation (University of Aix-Marseilles II, Aix-Marseilles, France, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Scheme of the single-particle scatterometer setup. The levitator is also shown from the side view.

Fig. 2
Fig. 2

CCD image of the 72 fibers after exposure of a Spherocarb particle.

Fig. 3
Fig. 3

Optical setup with a xenon lamp light source.

Fig. 4
Fig. 4

Electron micrograph of Spherocarbs. These are large, fairly round particles with a size of around 200 μm with rough surfaces and are highly porous.

Fig. 5
Fig. 5

Average scattering phase function of a single particle and stream particles of Spherocarbs obtained with a xenon lamp light.

Fig. 6
Fig. 6

Average scattering phase function of a single particle and stream particles of Spherocarbs obtained with an argon laser light.

Fig. 7
Fig. 7

Electron micrograph of Rottweil oil shale particles.

Fig. 8
Fig. 8

Average scattering phase function of a single particle and stream particles of Rottweil oil shale obtained with a xenon lamp light.

Fig. 9
Fig. 9

Average scattering phase function of a single particle and stream particles of Rottweil oil shale obtained with an argon laser light.

Fig. 10
Fig. 10

Electron micrograph of a Holland unburned ash sample.

Fig. 11
Fig. 11

Average scattering phase function of a single particle and stream particles of Holland unburned ash obtained with a xenon lamp light.

Fig. 12
Fig. 12

Average scattering phase function of a single particle and stream particles of Holland unburned ash obtained with an argon laser light.

Fig. 13
Fig. 13

Electron micrograph of a Holland burned ash sample.

Fig. 14
Fig. 14

Average scattering phase function of a single particle and stream particles of Holland burned ash obtained with a xenon lamp light.

Fig. 15
Fig. 15

Average scattering phase function of a single particle and stream particles of Holland burned ash obtained with an argon laser light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2π 0π pθsinθdθ=2π 0πISθ+IPθ2sinθdθ=4π.
pθ=i=1N piθ,

Metrics