Abstract

We present a model for quantitative measurements in binary mixtures of nitrogen and carbon monoxide by the use of dual-broadband rotational coherent anti-Stokes Raman spectroscopy. The model has been compared with experimental rotational coherent anti-Stokes Raman scattering spectra recorded within the temperature range of 294–702 K. Temperatures and concentrations were evaluated by spectral fits using libraries of theoretically calculated spectra. The relative error of the temperature measurements was 1–2%, and the absolute error of the CO concentration measurements was <0.5% for temperatures ≤600 K. For higher temperatures, the gas composition was not chemically stable, and we observed a conversion of CO to CO2. The influence of important spectroscopic parameters such as the anisotropic polarizability and Raman line-broadening coefficients are discussed in terms of concentration measurements. In particular, it is shown that the CO concentration measurement was more accurate if N2-CO and CO-N2 line-broadening coefficients were included in the calculation. The applicability of the model for quantitative flame measurements is demonstrated by measuring CO concentrations in ethylene/air flames.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., (Gordon and Breach, Amsterdam, The Netherlands, 1996).
  2. L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
    [CrossRef]
  3. M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2-N2 concentration measurements by single-shot pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
    [CrossRef]
  4. M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
    [CrossRef]
  5. S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
    [CrossRef]
  6. R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
    [CrossRef]
  7. F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
    [CrossRef]
  8. B. Dick, A. Gierulski, “Multiplex rotational CARS of N2, O2, and CO with excimer pumped dye laser: species identification and thermometry in the intermediate temperature range with high temporal and spatial resolution,” Appl. Phys. B 40, 1–7 (1986).
    [CrossRef]
  9. K. Aron, L. E. Harris, J. Fendell, “N2 and CO vibrational CARS and H2 rotational CARS spectroscopy of CH4/N2O flames,” Appl. Opt. 22, 3604–3611 (1983).
    [CrossRef] [PubMed]
  10. A. C. Eckbreth, R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175–192 (1981).
    [CrossRef]
  11. R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, “Species concentration measurements using CARS with nonresonant susceptibility normalization,” Appl. Opt. 24, 2241–2251 (1985).
    [CrossRef] [PubMed]
  12. F. Y. Yueh, E. J. Beiting, “Simultaneous N2, CO, and H2 multiplex CARS measurements in combustion environments using a single dye laser,” Appl. Opt. 27, 3233–3243 (1988).
    [CrossRef] [PubMed]
  13. S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
    [CrossRef]
  14. A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
    [CrossRef]
  15. A. Le Floch, “Revised molecular constants for the ground state of CO,” Mol. Phys. 72, 133–144 (1991).
    [CrossRef]
  16. R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
    [CrossRef]
  17. M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
    [CrossRef] [PubMed]
  18. A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
    [CrossRef] [PubMed]
  19. M. Afzelius, P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Interbranch interference effect,” Appl. Phys. B 75, 763–769 (2002).
    [CrossRef]
  20. D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, New York, 2002).
  21. M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
    [CrossRef]
  22. C. Asawaroengchai, G. M. Rosenblatt, “Rotational Raman intensities and the measured change with internuclear distance of the polarizability anisotropy of H2, D2, N2, O2, and CO,” J. Chem. Phys. 72, 2664–2669 (1980).
    [CrossRef]
  23. M. C. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982).
    [CrossRef] [PubMed]
  24. T. C. James, W. Klemperer, “Line intensities in the Raman effect of 1∑ diatomic molecules,” J. Chem. Phys. 31, 130–134 (1959).
    [CrossRef]
  25. J. W. Hahn, E. S. Lee, “Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B 12, 1021–1027 (1995).
    [CrossRef]
  26. M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
    [CrossRef]
  27. L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  28. E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
    [CrossRef]
  29. H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
    [CrossRef]
  30. H. Tran, B. Lavorel, O. Faucher, Laboratory of Physics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5027, University of Bourgogne, Avenue Alain Savary, Dijon, France (personal communication, 2002).
  31. A. E. DePristo, “Collisional influences on vibration-rotation spectral line shapes: a scaling theoretical analysis and simplification,” J. Chem. Phys. 73, 2145–2155 (1980).
    [CrossRef]
  32. G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
    [CrossRef]
  33. M. Afzelius, P.-E. Bengtsson, J. Bonamy, “Semiclassical calculations of collision line broadening in Raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120, 8616–8623 (2004).
    [CrossRef] [PubMed]
  34. A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
    [CrossRef]
  35. F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).
  36. F. Vestin, M. Afzelius, P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. (to be published).
  37. F. Beyrau, A. Datta, T. Seeger, A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
    [CrossRef]

2004 (2)

M. Afzelius, P.-E. Bengtsson, J. Bonamy, “Semiclassical calculations of collision line broadening in Raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120, 8616–8623 (2004).
[CrossRef] [PubMed]

F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).

2002 (4)

F. Beyrau, A. Datta, T. Seeger, A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Interbranch interference effect,” Appl. Phys. B 75, 763–769 (2002).
[CrossRef]

2000 (4)

E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
[CrossRef]

R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
[CrossRef]

F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
[CrossRef]

M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2-N2 concentration measurements by single-shot pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
[CrossRef]

1996 (1)

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

1995 (1)

1993 (1)

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

1992 (1)

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

1991 (2)

A. Le Floch, “Revised molecular constants for the ground state of CO,” Mol. Phys. 72, 133–144 (1991).
[CrossRef]

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

1990 (1)

S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

1989 (2)

M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

1988 (1)

1986 (2)

A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

B. Dick, A. Gierulski, “Multiplex rotational CARS of N2, O2, and CO with excimer pumped dye laser: species identification and thermometry in the intermediate temperature range with high temporal and spatial resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

1985 (1)

1983 (1)

1982 (1)

1981 (1)

A. C. Eckbreth, R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175–192 (1981).
[CrossRef]

1980 (2)

C. Asawaroengchai, G. M. Rosenblatt, “Rotational Raman intensities and the measured change with internuclear distance of the polarizability anisotropy of H2, D2, N2, O2, and CO,” J. Chem. Phys. 72, 2664–2669 (1980).
[CrossRef]

A. E. DePristo, “Collisional influences on vibration-rotation spectral line shapes: a scaling theoretical analysis and simplification,” J. Chem. Phys. 73, 2145–2155 (1980).
[CrossRef]

1979 (1)

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

1978 (2)

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
[CrossRef]

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

1975 (1)

A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
[CrossRef]

1959 (1)

T. C. James, W. Klemperer, “Line intensities in the Raman effect of 1∑ diatomic molecules,” J. Chem. Phys. 31, 130–134 (1959).
[CrossRef]

Afzelius, M.

F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).

M. Afzelius, P.-E. Bengtsson, J. Bonamy, “Semiclassical calculations of collision line broadening in Raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120, 8616–8623 (2004).
[CrossRef] [PubMed]

M. Afzelius, P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Interbranch interference effect,” Appl. Phys. B 75, 763–769 (2002).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

F. Vestin, M. Afzelius, P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. (to be published).

Agrup, S.

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

Aldén, M.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Anderson, T. J.

Aron, K.

Asawaroengchai, C.

C. Asawaroengchai, G. M. Rosenblatt, “Rotational Raman intensities and the measured change with internuclear distance of the polarizability anisotropy of H2, D2, N2, O2, and CO,” J. Chem. Phys. 72, 2664–2669 (1980).
[CrossRef]

Barlow, R. S.

R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
[CrossRef]

Bedir, H.

F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
[CrossRef]

Beiting, E. J.

Bengtsson, P.-E.

F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).

M. Afzelius, P.-E. Bengtsson, J. Bonamy, “Semiclassical calculations of collision line broadening in Raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120, 8616–8623 (2004).
[CrossRef] [PubMed]

M. Afzelius, P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Interbranch interference effect,” Appl. Phys. B 75, 763–769 (2002).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

F. Vestin, M. Afzelius, P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. (to be published).

Berger, H.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

Beyrau, F.

F. Beyrau, A. Datta, T. Seeger, A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Bogaard, M. P.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
[CrossRef]

Bonamy, J.

M. Afzelius, P.-E. Bengtsson, J. Bonamy, “Semiclassical calculations of collision line broadening in Raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120, 8616–8623 (2004).
[CrossRef] [PubMed]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

Bood, J.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

Brackmann, C.

F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).

Buckingham, A. D.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
[CrossRef]

Carter, C. D.

R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
[CrossRef]

Chaussard, F.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

Chaux, R.

E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
[CrossRef]

Chen, J.-Y.

R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
[CrossRef]

Clark, G. L.

Datta, A.

F. Beyrau, A. Datta, T. Seeger, A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

DePristo, A. E.

A. E. DePristo, “Collisional influences on vibration-rotation spectral line shapes: a scaling theoretical analysis and simplification,” J. Chem. Phys. 73, 2145–2155 (1980).
[CrossRef]

Dick, B.

B. Dick, A. Gierulski, “Multiplex rotational CARS of N2, O2, and CO with excimer pumped dye laser: species identification and thermometry in the intermediate temperature range with high temporal and spatial resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

Dohne, S. M.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Drake, M. C.

Dreier, T.

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, “Simultaneous rotational coherent anti-Stokes Raman spectroscopy and coherent Stokes Raman spectroscopy with arbitrary pump-Stokes spectral separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175–192 (1981).
[CrossRef]

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., (Gordon and Breach, Amsterdam, The Netherlands, 1996).

Edner, H.

Farmer, C. B.

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

Farrenq, R.

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

Farrow, R. L.

Faucher, O.

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
[CrossRef]

H. Tran, B. Lavorel, O. Faucher, Laboratory of Physics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5027, University of Bourgogne, Avenue Alain Savary, Dijon, France (personal communication, 2002).

Fendell, J.

Fiechtner, G. J.

R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
[CrossRef]

Frate, F. C.

F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
[CrossRef]

Gierulski, A.

B. Dick, A. Gierulski, “Multiplex rotational CARS of N2, O2, and CO with excimer pumped dye laser: species identification and thermometry in the intermediate temperature range with high temporal and spatial resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

Grevesse, N.

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

Guelachvili, G.

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

Hahn, J. W.

Hall, R. J.

A. C. Eckbreth, R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175–192 (1981).
[CrossRef]

Harris, L. E.

Hertz, E.

E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

James, T. C.

T. C. James, W. Klemperer, “Line intensities in the Raman effect of 1∑ diatomic molecules,” J. Chem. Phys. 31, 130–134 (1959).
[CrossRef]

Joubert, P.

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

Klemperer, W.

T. C. James, W. Klemperer, “Line intensities in the Raman effect of 1∑ diatomic molecules,” J. Chem. Phys. 31, 130–134 (1959).
[CrossRef]

Kröll, S.

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Lavorel, B.

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
[CrossRef]

H. Tran, B. Lavorel, O. Faucher, Laboratory of Physics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5027, University of Bourgogne, Avenue Alain Savary, Dijon, France (personal communication, 2002).

Le Floch, A.

A. Le Floch, “Revised molecular constants for the ground state of CO,” Mol. Phys. 72, 133–144 (1991).
[CrossRef]

Lee, E. S.

Leipertz, A.

Long, D. A.

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, New York, 2002).

Lucht, R. P.

Maillard, J. P.

A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
[CrossRef]

Mantz, A. W.

A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
[CrossRef]

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

Nilsson, D.

S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Aldén, P.-E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Palmer, R. E.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

R. L. Farrow, R. P. Lucht, G. L. Clark, R. E. Palmer, “Species concentration measurements using CARS with nonresonant susceptibility normalization,” Appl. Opt. 24, 2241–2251 (1985).
[CrossRef] [PubMed]

Pierens, R. K.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
[CrossRef]

Rahn, L. A.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Rao, K. N.

A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
[CrossRef]

Roh, W. B.

A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
[CrossRef]

Rosasco, G. J.

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

Rosenblatt, G. M.

C. Asawaroengchai, G. M. Rosenblatt, “Rotational Raman intensities and the measured change with internuclear distance of the polarizability anisotropy of H2, D2, N2, O2, and CO,” J. Chem. Phys. 72, 2664–2669 (1980).
[CrossRef]

Saint-Loup, R.

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

Sauval, A. J.

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

Schenk, M.

Seeger, T.

Sung, C. J.

F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
[CrossRef]

Tien, J. S.

F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
[CrossRef]

Tran, H.

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

H. Tran, B. Lavorel, O. Faucher, Laboratory of Physics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5027, University of Bourgogne, Avenue Alain Savary, Dijon, France (personal communication, 2002).

Vestin, F.

F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).

F. Vestin, M. Afzelius, P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. (to be published).

White, A. H.

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
[CrossRef]

Yueh, F. Y.

Yuratich, M. A.

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (5)

L. Martinsson, P.-E. Bengtsson, M. Aldén, “Oxygen concentration and temperature measurements in N2-O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bood, J. Bonamy, F. Chaussard, H. Berger, T. Dreier, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. II. Rotational Raman line widths,” Appl. Phys. B 75, 771–778 (2002).
[CrossRef]

B. Dick, A. Gierulski, “Multiplex rotational CARS of N2, O2, and CO with excimer pumped dye laser: species identification and thermometry in the intermediate temperature range with high temporal and spatial resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

S. Kröll, P.-E. Bengtsson, M. Aldén, D. Nilsson, “Is rotational CARS an alternative to vibrational CARS for thermometry?,” Appl. Phys. B 51, 25–30 (1990).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, “Dual-broadband rotational CARS modelling of nitrogen at pressures up to 9 MPa. I. Interbranch interference effect,” Appl. Phys. B 75, 763–769 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

Chem. Phys. Lett. (1)

S. Agrup, M. Aldén, “Measurement of the collision-quenched lifetime of CO molecules in a flame at atmospheric pressure,” Chem. Phys. Lett. 189, 211–216 (1992).
[CrossRef]

Combust. Flame (1)

R. S. Barlow, G. J. Fiechtner, C. D. Carter, J.-Y. Chen, “Experiments on the scalar structure of turbulent CO/H2/N2 jet flames,” Combust. Flame 120, 549–569 (2000).
[CrossRef]

Combust. Sci. Technol. (1)

A. C. Eckbreth, R. J. Hall, “CARS concentration sensitivity with and without nonresonant background suppression,” Combust. Sci. Technol. 25, 175–192 (1981).
[CrossRef]

J. Chem. Phys. (7)

L. Martinsson, P.-E. Bengtsson, M. Aldén, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models: accuracy of rotational coherent anti-Stokes Raman scattering thermometry in nitrogen from 295 to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

C. Asawaroengchai, G. M. Rosenblatt, “Rotational Raman intensities and the measured change with internuclear distance of the polarizability anisotropy of H2, D2, N2, O2, and CO,” J. Chem. Phys. 72, 2664–2669 (1980).
[CrossRef]

A. E. DePristo, “Collisional influences on vibration-rotation spectral line shapes: a scaling theoretical analysis and simplification,” J. Chem. Phys. 73, 2145–2155 (1980).
[CrossRef]

G. J. Rosasco, L. A. Rahn, W. S. Hurst, R. E. Palmer, S. M. Dohne, “Measurement and prediction of Raman Q-branch line self-broadening coefficients for CO from 400 to 1500 K,” J. Chem. Phys. 90, 4059–4068 (1989).
[CrossRef]

M. Afzelius, P.-E. Bengtsson, J. Bonamy, “Semiclassical calculations of collision line broadening in Raman spectra of N2 and CO mixtures,” J. Chem. Phys. 120, 8616–8623 (2004).
[CrossRef] [PubMed]

E. Hertz, B. Lavorel, O. Faucher, R. Chaux, “Femtosecond polarization spectroscopy in molecular gas mixtures: macroscopic interference and concentration measurements,” J. Chem. Phys. 113, 6629–6633 (2000).
[CrossRef]

T. C. James, W. Klemperer, “Line intensities in the Raman effect of 1∑ diatomic molecules,” J. Chem. Phys. 31, 130–134 (1959).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. P. Bogaard, A. D. Buckingham, R. K. Pierens, A. H. White, “Rayleigh scattering depolarization ratio and molecular polarizability anisotropy of gases,” J. Chem. Soc. Faraday Trans. 74, 3008–3015 (1978).
[CrossRef]

J. Mol. Spectrosc. (2)

R. Farrenq, G. Guelachvili, A. J. Sauval, N. Grevesse, C. B. Farmer, “Improved Dunham coefficients for CO from infrared solar lines of high rotational excitation,” J. Mol. Spectrosc. 149, 375–390 (1991).
[CrossRef]

A. W. Mantz, J. P. Maillard, W. B. Roh, K. N. Rao, “Ground state molecular constants of 12C16O,” J. Mol. Spectrosc. 57, 155–159 (1975).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (2)

H. Tran, B. Lavorel, O. Faucher, R. Saint-Loup, P. Joubert, “Determination of concentrations in ternary and quaternary molecular gas mixtures using femtosecond Raman spectroscopy,” J. Raman Spectrosc. 33, 872–876 (2002).
[CrossRef]

F. Beyrau, A. Datta, T. Seeger, A. Leipertz, “Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames,” J. Raman Spectrosc. 33, 919–924 (2002).
[CrossRef]

Mol. Phys. (2)

A. Le Floch, “Revised molecular constants for the ground state of CO,” Mol. Phys. 72, 133–144 (1991).
[CrossRef]

M. A. Yuratich, “Effects of laser linewidth on coherent anti-Stokes Raman spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (2)

F. Vestin, M. Afzelius, C. Brackmann, P.-E. Bengtsson, “Dual-broadband rotational CARS thermometry in the product gas of hydrocarbon flames,” Proc. Combust. Inst. 30, 1623–1630 (2004).

F. C. Frate, H. Bedir, C. J. Sung, J. S. Tien, “On flammability limits of dry CO/O2 opposed-jet diffusion flames,” Proc. Combust. Inst. 28, 2047–2054 (2000).
[CrossRef]

Other (4)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., (Gordon and Breach, Amsterdam, The Netherlands, 1996).

D. A. Long, The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, New York, 2002).

F. Vestin, M. Afzelius, P.-E. Bengtsson, “Improved species concentration measurements using a species-specific weighting procedure on rotational CARS spectra,” J. Raman Spectrosc. (to be published).

H. Tran, B. Lavorel, O. Faucher, Laboratory of Physics, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5027, University of Bourgogne, Avenue Alain Savary, Dijon, France (personal communication, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup of a dual-broadband rotational CARS measurement in a measurement cell. The Nd:YAG laser generates a green beam at 532 nm (ω3), and the dye laser generates a broadband beam around 630 nm (DCM dye), which is split into two beams (ω1, ω2). BS, beam splitter; D, dichroic mirror transmitting the red dye laser beam and reflecting 532 nm; L, lens; BD, beam dump; and SP, short-pass filter.

Fig. 2
Fig. 2

Evaluated temperatures from dual-broadband rotational CARS spectra of pure nitrogen, pure carbon monoxide, and of the two mixtures. The deviation from the thermocouple temperatures is at most 14 K, but is usually less than 6 K.

Fig. 3
Fig. 3

Examples of experimental dual-broadband rotational CARS spectra of (a) pure carbon monoxide and (b) of the mixture of 74.3% CO and 25.7% N2. The evaluated temperatures and carbon monoxide concentration are given. The temperature measured by thermocouple was 505 K. The lower solid curve is the difference between the experimental and best-fitted theoretical spectrum.

Fig. 4
Fig. 4

Evaluated carbon monoxide concentrations are shown at different temperatures for the two calibrated mixtures: (a) 74.3% CO and 25.7% N2, and (b) 39.9% CO and 60.1% N2. Each symbol corresponds to a spectrum averaged over 200 laser shots, and there are ten spectra per temperature. The (+) symbols show the evaluated concentrations when N2-CO and CO-N2 broadening coefficients are taken into account, whereas the (×) symbols show the results with only self-broadened linewidths. The solid lines mark the concentrations stated by the gas supplier, and the uncertainties of the specified values are shown by the dotted lines.

Fig. 5
Fig. 5

Averaged experimental rotational CARS spectrum recorded in the product gas of an ethylene/air flame at equivalence ratio 2.0. The spectrum was obtained by accumulating 200 single-shot spectra directly on the CCD camera. The measurement was done in a McKenna burner, and the measurement point was located 8.5 mm above the burner surface. The temperature measured with rotational CARS was 1747 K. The arrows indicate some of the weak rotational lines of carbon monoxide. Note that the unsmooth envelope of the spectrum is due to distribution of intensity on adjacent detector pixels.

Fig. 6
Fig. 6

Measured relative CO concentrations for different fuel-rich ethylene/air mixtures. Solid squares represent the chemical equilibrium calculation, open circles represent the evaluation using the species-specific weighting procedure, and open triangles represent the standard evaluation without any weighting. The error bars show twice the standard deviation of the measured concentrations of five spectra at each equivalence ratio.

Tables (2)

Tables Icon

Table 1 Molecular Parameters Used in the Calculation of Rotational Coherent Anti-Stokes Raman Scattering Spectra of CO

Tables Icon

Table 2 Fitted Nonresonant Susceptibilitiesa, χNR (3), for Carbon Monoxide and the Mixture of 74.3% N2 and 25.7% COb

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

χ3=χR3+χNR3.
χR3ω1-ω2=JaJ,J+2ωJ,J+2-ω1+ω2-ipγJ,J+2.
aJ,J+2=4/45N/bJJ+2ζν2FJ, J+2ΔρJ,J+2.
Iω4=AχNR32+BχNR3+C,
γJ,J+2N2=cN2γJ,J+2N2-N2+cCOγJ,J+2N2-CO,
γJ,J+2=12γJ,J+γJ+2,J+2.
SSQ=iIith-Iiexp2,

Metrics