Abstract

A birefringent wedge in a collimated 351-nm beam provides polarization smoothing at the Omega laser facility and provided it for the Nova laser. At the National Ignition Facility, the best place to put such an optic is after the final focus lens. In a converging beam, a flat birefringent plate can closely mimic the polarization-smoothing action of a wedge. In this new design the flat plate is nearly a Z-cut crystal; for the wedges, the optical axis of the crystal lies far from the plate normal.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” Laboratory for Laser Energetics Rev. 45, National Technical Information Service Doc. DOE/DP40200-149 (Laboratory for Laser Energetics, Rochester, N.Y., 1990).
  2. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
    [CrossRef]
  3. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
    [CrossRef]
  4. S. Pau, S. N. Dixit, D. Eimerl, “Electro-optic control of correlations in speckle statistics,” J. Opt. Soc. Am. B 11, 1498–1503 (1994).
    [CrossRef]
  5. E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
    [CrossRef]
  6. T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
    [CrossRef]
  7. J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
    [CrossRef] [PubMed]
  8. S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
    [CrossRef]
  9. J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
    [CrossRef]
  10. J. P. McGuire, R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990).
    [CrossRef]
  11. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), pp. 694–701.
  12. E. E. Wahlstrom, Optical Crystallography, 5th ed. (Wiley, New York, 1979), Chap. 10, pp. 242–263.
  13. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
    [CrossRef]
  14. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–76.
  15. C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
    [CrossRef]
  16. N. Zaitseva, L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001).
    [CrossRef]

2001 (3)

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

N. Zaitseva, L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001).
[CrossRef]

2000 (1)

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[CrossRef]

1999 (1)

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

1998 (1)

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

1994 (1)

1993 (1)

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

1992 (1)

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

1990 (1)

J. P. McGuire, R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990).
[CrossRef]

1989 (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Barker, C. E.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Berger, R. L.

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

Boehly, T. R.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), pp. 694–701.

Bradley, D. K.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Caird, J. A.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Campbell, J. H.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Carman, L.

N. Zaitseva, L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001).
[CrossRef]

Chipman, R. A.

J. P. McGuire, R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990).
[CrossRef]

Craxton, R. S.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Divol, L.

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

Divol, L. M.

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

Dixit, S. N.

Ehrlich, R. B.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Eimerl, D.

Glenzer, S. H.

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–76.

Guardalben, M. J.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Jitsuno, T.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kanabe, T.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Kessler, T. J.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Kirkwood, R. K.

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

Knauer, J. P.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Kyle, K.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Langdon, A. B.

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

Lefebvre, E.

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

MacGowan, B. J.

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

McGuire, J. P.

J. P. McGuire, R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990).
[CrossRef]

Meyerhofer, D. D.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Miyanaga, N.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Moody, J. D.

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

Murray, J. R.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Nakai, S.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakatsuka, M.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nielsen, N. D.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Pau, S.

Rothenberg, J. E.

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[CrossRef]

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

Sacks, R. A.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Skupsky, S.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Smalyuk, V. A.

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

Suter, L. J.

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

Tsubakimoto, K.

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Van Wonterghem, B. M.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

Wahlstrom, E. E.

E. E. Wahlstrom, Optical Crystallography, 5th ed. (Wiley, New York, 1979), Chap. 10, pp. 242–263.

Williams, E. A.

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), pp. 694–701.

Young, P. E.

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

Zaitseva, N.

N. Zaitseva, L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001).
[CrossRef]

J. Appl. Phys. (3)

T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, T. J. Kessler, “Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,” J. Appl. Phys. 85, 3444–3447 (1999).
[CrossRef]

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[CrossRef]

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, J. M. Soures, “Improved laser-beam uniformity using the angular dispersion of frequency modulated light,” J. Appl. Phys. 66, 3456–3462 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, S. Nakai, “Suppression of speckle contrast by using polarization property on second harmonic generation,” Opt. Commun. 103, 185–188 (1993).
[CrossRef]

Opt. Eng. (1)

J. P. McGuire, R. A. Chipman, “Analysis of spatial pseudodepolarizers in imaging systems,” Opt. Eng. 29, 1478–1484 (1990).
[CrossRef]

Phys. Plasmas (2)

E. Lefebvre, R. L. Berger, A. B. Langdon, B. J. MacGowan, J. E. Rothenberg, E. A. Williams, “Reduction of laser self-focusing in plasma by polarization smoothing,” Phys. Plasmas 5, 2701–2705 (1998).
[CrossRef]

S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, A. B. Langdon, L. J. Suter, E. A. Williams, “Reduction of stimulated scattering losses from hohlraum plasmas with laser beam smoothing,” Phys. Plasmas 8, 1692–1696 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

J. D. Moody, B. J. MacGowan, J. E. Rothenberg, R. L. Berger, L. Divol, S. H. Glenzer, R. K. Kirkwood, E. A. Williams, P. E. Young, “Backscatter reduction using combined spatial, temporal, and polarization beam smoothing in a long-scale-length laser plasma,” Phys. Rev. Lett. 86, 2810–2813 (2001).
[CrossRef] [PubMed]

Prog. Cryst. Growth Charact. Mater. (1)

N. Zaitseva, L. Carman, “Rapid growth of KDP-type crystals,” Prog. Cryst. Growth Charact. Mater. 43, 1–118 (2001).
[CrossRef]

Other (5)

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, New York, 1984), pp. 9–76.

C. E. Barker, R. A. Sacks, B. M. Van Wonterghem, J. A. Caird, J. R. Murray, J. H. Campbell, K. Kyle, R. B. Ehrlich, N. D. Nielsen, “Transverse stimulated Raman scattering in KDP,” in Solid State Lasers for Application to Inertial Confinement Fusion (ICF), W. F. Krupke, ed., Proc. SPIE2633, 501–505 (1995).
[CrossRef]

M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, Oxford, 1970), pp. 694–701.

E. E. Wahlstrom, Optical Crystallography, 5th ed. (Wiley, New York, 1979), Chap. 10, pp. 242–263.

Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” Laboratory for Laser Energetics Rev. 45, National Technical Information Service Doc. DOE/DP40200-149 (Laboratory for Laser Energetics, Rochester, N.Y., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of a polarization-smoothing wedge. For simplicity, the ray directions outside and inside in the crystal are normal to the input surface of the wedge. (The wedge angle is too small to be visible.) Crystal axis ĉ lies in the plane normal to the input surface and 45° from the incident polarization direction, to divide the incident light equally between the o and e directions.

Fig. 2
Fig. 2

NIF final optics geometry, with angles and thicknesses exaggerated for clarity. The optics are a doubler (D), a tripler (T), a final lens (FL), a slot (S) where the polarization-smoothing optic can be placed, and a debris shield (DS). Slot S is inclined at a compound angle relative to the beam centerline of 12.46° in the side view and 2.07° in the top view. The beam is a 370-mm square, and the focal length is 7700 mm, which determines the angular variation across the optic at S. The incident beam polarization (E-field) is vertical, that is, in the plane of the side view.

Fig. 3
Fig. 3

(a) The isogyre pattern is the near-field intensity in the incident polarization that is produced by a birefringent plate in a converging beam (if the beam and the scrambler optic had unlimited transverse extent). Ray C at the center of the isogyre pattern propagates along the optical axis inside the crystal. (b) In the simplest case the crystal axis is normal to the surface of the plate. (c) Tilting the crystal axis to a modest angle changes the shape of the isochromes by a negligible amount. The square outlined in white in (a) indicates the actual aperture of our dKDP scrambler plate relative to the whole pattern. The incident beam’s polarization is vertical.

Fig. 4
Fig. 4

(a) View of the NIF beam from the target, showing the location of the isogyre pattern, central ray of the beam, the square aperture, and the center of the isogyre pattern, c . (b) The same picture in angular space, relative to the scrambler plate normal. From Fig. 2, the external direction of the central ray is = (-2.07°, 12.64°). The internal direction of the central ray is , and the crystal axis is ĉ. The lighter filled circles are the three other crystal axes for alternative scrambler plate designs.

Fig. 5
Fig. 5

Diffraction-limited far-field spots with scrambler plate. Rings are increments of 10-μm radius. (a) Light with the indicated polarization, which comprises mostly o rays. (b) Light with the orthogonal polarization, mostly e rays, in the same plane as for (a). (c) Spot if the plate were not birefringent, with n = n o . (d) Same as (b) but in a plane 0.37 mm farther from the lens.

Fig. 6
Fig. 6

Comparison of the speckle pattern intensity distribution for a dKDP scrambler with 30-μm spot separation (solid curve), a wedge with 30-μm spot separation (dashed curve), and Eq. (6) (dotted curve), an ideal polarization-smoothing optic.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

n-2=ne-2+no-2-ne-2ĉ · qˆ2, ĉ · qˆ=cos γ.
OPDwaves=δnw/λ,
α=sfδn.
OPDwaves=δnn2wλ θ2+Oθ4.
θc=s2wn2δn.
Fx=1+2x+2x2exp-2x.
0 Fxdx-11/2.
nqˆ=rˆ+nˆn2-1+nˆ · rˆ21/2-nˆ · rˆ.
x=nnˆ · qˆ=n2-1+nˆ · rˆ21/2
x=B+no2-1+nˆ · rˆ2+A+B21/2,
A=ne2-no2no2-C2-nˆ · ĉ2no2-1+nˆ · rˆ2D,B=-ne2-no2nˆ · ĉCD,C=ĉ · rˆ-nˆ · ĉnˆ · rˆ,D=no2+ne2-no2nˆ · ĉ2.
n-no=A+2Bxno+no2+A+2Bx1/2.
ϕ=2πnnˆ · qˆ-nˆ · rˆw/λ=2πx-nˆ · rˆw/λ.
OPDwaves=ϕe-ϕo2π=A+2Bxx+no2-1+nˆ · rˆ21/2wλ.
pˆr=qˆ · rˆpˆq+qˆ×rˆqˆ×rˆ · pˆq1+qˆ · rˆ+qˆ×rˆ×pˆq.
pˆqo=ĉ×qˆ/|ĉ×qˆ|.
pˆr=rˆ0 · rˆpˆ0+rˆ0×rˆrˆ0×rˆ · pˆ01+rˆ0 · rˆ+rˆ0×rˆ×pˆ0.

Metrics