Abstract

We describe a novel modification of multimode-interference devices that has broad applicability. The modification involves introducing a slot (or slots), of a specific width and effective refractive index and at a specific position, that runs the longitudinal length of the multimode-interference region. Introducing N slots reduces the self-image length by a factor of N + 1. Varying the effective refractive index or width of the slot(s) creates a switch. The slot modification can be accomplished in a variety of ways, actually increases bandwidth, and has good error tolerances.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  2. M. Blahut, A. Opilski, “Multimode interference structures-new way of passive elements technology for photonics,” Opto-Electron. Rev. 9, 293–300 (2001).
  3. D. M. Mackie, T. J. Tayag, “Modeling of self-imaging integrated optical power splitters,” in Proceedings of the Fifth Biennial DoD Photonics Conference, L. D. Pierce, ed. (Armed Forces Communications and Electronics Association, Fairfax, Va., 1996), pp. 59–64.
  4. E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.
  5. E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
    [CrossRef]
  6. B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
    [CrossRef]
  7. L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
    [CrossRef]
  8. H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).
  9. D. M. Mackie, H. K. Kim, C. M. Fitzpatrick, “Integrated, optically-pumped, lossless splitters: progress and challenges,” presented at the 22nd Army Science Conference, Baltimore, Md., 11–13 December 2000.
  10. D. M. Mackie, “End-pumped waveguide optical splitter-amplifiers based on self-imaging,” U.S. patent6,178,276 (23January2001).
  11. M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
    [CrossRef]
  12. K. C. Lin, W. Y. Lee, “Guided-wave 1.3/1.55-μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
    [CrossRef]
  13. D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.
  14. D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,838,842 (17November1998).
  15. D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,852,691 (22December1998).
  16. T. Tayag, T. Batchman, “Self-imaging waveguide devices for wavelength division multiplexing applications,” U.S. patent5,862,288 (19January1999).
  17. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
    [CrossRef]
  18. G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.
  19. D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001).
    [CrossRef]
  20. B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
    [CrossRef]
  21. S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002).
    [CrossRef]
  22. W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.
  23. S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “An SOI X-crossing optical switch,” in Solar and Switching Materials, C. M. Lampert, C.-G. Granqvist, K. L. Lewis, eds., Proc. SPIE4458, 269–277 (2001).
    [CrossRef]
  24. S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside,” in Materials and Devices for Photonic Crystals II, M. N. Armenise, ed., Proc. SPIE4453, 162–169 (2001).
  25. C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
    [CrossRef]
  26. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
    [CrossRef]
  27. K. C. Lin, W. Y. Lee, “A dual-channel wavelength multiplexer/demultiplexer based on the restricted-resonance self-imaging effect,” Fiber Integr. Opt. 16, 73–81 (1997).
    [CrossRef]
  28. D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
    [CrossRef]
  29. D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998).
    [CrossRef]
  30. D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
    [CrossRef]
  31. H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
    [CrossRef]
  32. J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
    [CrossRef]
  33. G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997).
    [CrossRef]
  34. P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998).
    [CrossRef]
  35. H. H. El-Refaei, D. A. M. Khalil, “Design of strip-loaded weak-guiding multimode interference structure for an optical router,” IEEE J. Quantum Electron. 34, 2286–2290 (1998).
    [CrossRef]
  36. S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
    [CrossRef]
  37. S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
    [CrossRef]
  38. K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
    [CrossRef]
  39. F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989).
    [CrossRef]
  40. J. C. Campbell, T. Li, “Electro-optic multimode waveguide modulator or switch,” J. Appl. Phys. 50, 6149–6154 (1979).
    [CrossRef]
  41. M. P. Earnshaw, D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20, 643–650 (2002).
    [CrossRef]
  42. D. M. Mackie, A. W. Lee, “Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1–6 June 2003.
  43. T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995).
    [CrossRef]
  44. T. J. Tayag, “Easily manufacturable optical self-imaging waveguide,” U.S. patent5,640,474 (17June1997).
  45. M. Bachmann, P. A. Besse, H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. 33, 3905–3911 (1994).
    [CrossRef] [PubMed]
  46. A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.
  47. C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
    [CrossRef]
  48. T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
    [CrossRef]
  49. P. Xi, C. Zhou, E. Dai, L. Liu, “Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect,” Opt. Express 10, 1099–1104 (2002), http://www.opticsexpress.org .
    [CrossRef] [PubMed]

2003

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

2002

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

M. P. Earnshaw, D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20, 643–650 (2002).
[CrossRef]

S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
[CrossRef]

P. Xi, C. Zhou, E. Dai, L. Liu, “Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect,” Opt. Express 10, 1099–1104 (2002), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002).
[CrossRef]

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

2001

M. Blahut, A. Opilski, “Multimode interference structures-new way of passive elements technology for photonics,” Opto-Electron. Rev. 9, 293–300 (2001).

D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001).
[CrossRef]

B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
[CrossRef]

2000

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

1999

S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

1998

D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998).
[CrossRef]

P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998).
[CrossRef]

H. H. El-Refaei, D. A. M. Khalil, “Design of strip-loaded weak-guiding multimode interference structure for an optical router,” IEEE J. Quantum Electron. 34, 2286–2290 (1998).
[CrossRef]

1997

G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997).
[CrossRef]

K. C. Lin, W. Y. Lee, “A dual-channel wavelength multiplexer/demultiplexer based on the restricted-resonance self-imaging effect,” Fiber Integr. Opt. 16, 73–81 (1997).
[CrossRef]

1996

K. C. Lin, W. Y. Lee, “Guided-wave 1.3/1.55-μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[CrossRef]

1995

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
[CrossRef]

T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995).
[CrossRef]

1994

1992

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

1989

F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989).
[CrossRef]

1987

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

1979

J. C. Campbell, T. Li, “Electro-optic multimode waveguide modulator or switch,” J. Appl. Phys. 50, 6149–6154 (1979).
[CrossRef]

Allsopp, D. W. E.

Alvarez, F.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Apte, P. S.

A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.

Aramburu, C.

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

Bachmann, M.

Batchman, T.

T. Tayag, T. Batchman, “Self-imaging waveguide devices for wavelength division multiplexing applications,” U.S. patent5,862,288 (19January1999).

Batchman, T. E.

D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001).
[CrossRef]

Besse, P. A.

Blahut, M.

M. Blahut, A. Opilski, “Multimode interference structures-new way of passive elements technology for photonics,” Opto-Electron. Rev. 9, 293–300 (2001).

Bock, W. J.

P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998).
[CrossRef]

Brock, J.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

Brock, J. C.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Broughton, J. N.

M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
[CrossRef]

Bryant, G. W.

T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995).
[CrossRef]

Campbell, J. C.

J. C. Campbell, T. Li, “Electro-optic multimode waveguide modulator or switch,” J. Appl. Phys. 50, 6149–6154 (1979).
[CrossRef]

Chang, H.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Chang, W.-C.

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.

Chen, Y.-J.

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “An SOI X-crossing optical switch,” in Solar and Switching Materials, C. M. Lampert, C.-G. Granqvist, K. L. Lewis, eds., Proc. SPIE4458, 269–277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside,” in Materials and Devices for Photonic Crystals II, M. N. Armenise, ed., Proc. SPIE4453, 162–169 (2001).

Choi, M.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Chrostowski, J.

P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998).
[CrossRef]

Coldren, L. A.

G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997).
[CrossRef]

Dai, E.

Davis, J.

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

DenBaars, S. P.

G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997).
[CrossRef]

Dries, C.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Dubost, A. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Earnshaw, M. P.

El-Refaei, H. H.

H. H. El-Refaei, D. A. M. Khalil, “Design of strip-loaded weak-guiding multimode interference structure for an optical router,” IEEE J. Quantum Electron. 34, 2286–2290 (1998).
[CrossRef]

Euliss, G. W.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

Fang, C.

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

Fish, G. A.

G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997).
[CrossRef]

Fitzpatrick, C. M.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
[CrossRef]

D. M. Mackie, H. K. Kim, C. M. Fitzpatrick, “Integrated, optically-pumped, lossless splitters: progress and challenges,” presented at the 22nd Army Science Conference, Baltimore, Md., 11–13 December 2000.

Forrest, S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Galarza, M.

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

Grattan, K. T. V.

B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
[CrossRef]

Guo, H.-C.

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “An SOI X-crossing optical switch,” in Solar and Switching Materials, C. M. Lampert, C.-G. Granqvist, K. L. Lewis, eds., Proc. SPIE4458, 269–277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside,” in Materials and Devices for Photonic Crystals II, M. N. Armenise, ed., Proc. SPIE4453, 162–169 (2001).

Harrison, L. J.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

Harvey, J. F.

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

Hnatiw, A. J. P.

A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.

Hong, J. M.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Inayoshi, H.

Inoue, H.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

Ishida, K.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

Ito, F.

F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989).
[CrossRef]

Janz, C. F.

M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
[CrossRef]

Jeong, J. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Jiang, X.-Q.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).

Jiang, Z.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

Johnson, R.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Kadoi, T.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

Kang, B.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Khalil, D. A. M.

H. H. El-Refaei, D. A. M. Khalil, “Design of strip-loaded weak-guiding multimode interference structure for an optical router,” IEEE J. Quantum Electron. 34, 2286–2290 (1998).
[CrossRef]

Kim, E.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
[CrossRef]

Kim, G.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Kim, H. K.

D. M. Mackie, H. K. Kim, C. M. Fitzpatrick, “Integrated, optically-pumped, lossless splitters: progress and challenges,” presented at the 22nd Army Science Conference, Baltimore, Md., 11–13 December 2000.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
[CrossRef]

Kim, S.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Kunkee, E. T.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Kuykendall, D.

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

Leavitt, R. P.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

Lee, A. W.

D. M. Mackie, A. W. Lee, “Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1–6 June 2003.

Lee, B.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
[CrossRef]

Lee, E.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Lee, S.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Lee, S. G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Lee, W. Y.

K. C. Lin, W. Y. Lee, “A dual-channel wavelength multiplexer/demultiplexer based on the restricted-resonance self-imaging effect,” Fiber Integr. Opt. 16, 73–81 (1997).
[CrossRef]

K. C. Lin, W. Y. Lee, “Guided-wave 1.3/1.55-μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[CrossRef]

Leight, J.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Lembo, L.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

Lembo, L. J.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Levy, D. S.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Li, B.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

Li, G.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

Li, T.

J. C. Campbell, T. Li, “Electro-optic multimode waveguide modulator or switch,” J. Appl. Phys. 50, 6149–6154 (1979).
[CrossRef]

Li, Y. M.

D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Lien, C.-H.

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

Lin, H.-H.

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.

Lin, K. C.

K. C. Lin, W. Y. Lee, “A dual-channel wavelength multiplexer/demultiplexer based on the restricted-resonance self-imaging effect,” Fiber Integr. Opt. 16, 73–81 (1997).
[CrossRef]

K. C. Lin, W. Y. Lee, “Guided-wave 1.3/1.55-μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[CrossRef]

Liu, E.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

Liu, L.

Liu, Z.

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

Lopez-Amo, M.

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

Ma, H.-L.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).

MacDonald, R. I.

M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
[CrossRef]

A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.

MacDonald, W. D.

A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.

Mackie, D. M.

D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001).
[CrossRef]

T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995).
[CrossRef]

D. M. Mackie, H. K. Kim, C. M. Fitzpatrick, “Integrated, optically-pumped, lossless splitters: progress and challenges,” presented at the 22nd Army Science Conference, Baltimore, Md., 11–13 December 2000.

D. M. Mackie, T. J. Tayag, “Modeling of self-imaging integrated optical power splitters,” in Proceedings of the Fifth Biennial DoD Photonics Conference, L. D. Pierce, ed. (Armed Forces Communications and Electronics Association, Fairfax, Va., 1996), pp. 59–64.

D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,838,842 (17November1998).

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

D. M. Mackie, “End-pumped waveguide optical splitter-amplifiers based on self-imaging,” U.S. patent6,178,276 (23January2001).

D. M. Mackie, A. W. Lee, “Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1–6 June 2003.

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
[CrossRef]

D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,852,691 (22December1998).

Matsumura, H.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

Matsuura, M.

F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989).
[CrossRef]

Melchior, H.

Morishima, G.

S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
[CrossRef]

S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
[CrossRef]

Nagai, S.

S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
[CrossRef]

S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
[CrossRef]

Nakamura, H.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

Nichols, D.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

O, B.-H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Opilski, A.

M. Blahut, A. Opilski, “Multimode interference structures-new way of passive elements technology for photonics,” Opto-Electron. Rev. 9, 293–300 (2001).

Osgood, R. M.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Paiam, M. R.

M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
[CrossRef]

Park, K. H.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Park, S. R.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Park, S.-G.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Pena, J. M. S.

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Qin, J.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

Rahman, B. M. A.

B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
[CrossRef]

Reitsma, C. L.

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

Ryu, H. H.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Scarmozzino, R.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
[CrossRef]

Shi, W.

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

Simonis, G. J.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

Smit, M. K.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Somasiri, N.

B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
[CrossRef]

Stead, M.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

Steer, M. B.

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

Studenkov, P.

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

Tanifuji, T.

F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989).
[CrossRef]

Tayag, T.

T. Tayag, T. Batchman, “Self-imaging waveguide devices for wavelength division multiplexing applications,” U.S. patent5,862,288 (19January1999).

Tayag, T. J.

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001).
[CrossRef]

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995).
[CrossRef]

D. M. Mackie, T. J. Tayag, “Modeling of self-imaging integrated optical power splitters,” in Proceedings of the Fifth Biennial DoD Photonics Conference, L. D. Pierce, ed. (Armed Forces Communications and Electronics Association, Fairfax, Va., 1996), pp. 59–64.

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

T. J. Tayag, “Easily manufacturable optical self-imaging waveguide,” U.S. patent5,640,474 (17June1997).

Themistos, C.

B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
[CrossRef]

Tsai, P.-S.

W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.

Tsao, S.-L.

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “An SOI X-crossing optical switch,” in Solar and Switching Materials, C. M. Lampert, C.-G. Granqvist, K. L. Lewis, eds., Proc. SPIE4458, 269–277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside,” in Materials and Devices for Photonic Crystals II, M. N. Armenise, ed., Proc. SPIE4453, 162–169 (2001).

Utaka, K.

S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
[CrossRef]

S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
[CrossRef]

Vazquez, C.

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

Veerman, F. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Verbeek, B. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Wang, H.-J.

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.

Wang, M.-H.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).

Wang, X.

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

Wei, H.

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

Weng, S.-W.

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.

Woo, D.

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

Woo, D. W.

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

Xi, P.

Yagi, M.

S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
[CrossRef]

Yakovlev, A. B.

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

Yang, J.-Y.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).

Yu, J.

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

Zhang, X.

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

Zhao, P.

P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998).
[CrossRef]

Zhou, C.

Zmudzinski, C.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

Appl. Opt.

Appl. Phys. B

B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, “Design of optical polarization splitters in a single-section deeply etched MMI waveguide,” Appl. Phys. B 73, 613–618 (2001).
[CrossRef]

Appl. Phys. Lett.

K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, H. Inoue, “InGaAsP/InP optical switches using carrier induced refractive index change,” Appl. Phys. Lett. 50, 141–142 (1987).
[CrossRef]

Chinese J. Semicond.

H.-L. Ma, J.-Y. Yang, X.-Q. Jiang, M.-H. Wang, “Compact and economical MMI optical power splitter for optical communication,” Chinese J. Semicond. 21, 966–969 (2000).

Electron. Lett.

K. C. Lin, W. Y. Lee, “Guided-wave 1.3/1.55-μm wavelength division multiplexer based on multimode interference,” Electron. Lett. 32, 1259–1261 (1996).
[CrossRef]

H. Wei, J. Yu, Z. Liu, X. Zhang, W. Shi, C. Fang, “Fabrication of 2 × 2 tapered multimode interference coupler,” Electron. Lett. 36, 1618–1619 (2000).
[CrossRef]

G. A. Fish, L. A. Coldren, S. P. DenBaars, “Compact InGaAsP/InP 1 × 2 optical switch based on carrier induced suppression of modal interference,” Electron. Lett. 33, 1898–1899 (1997).
[CrossRef]

Fiber Integr. Opt.

K. C. Lin, W. Y. Lee, “A dual-channel wavelength multiplexer/demultiplexer based on the restricted-resonance self-imaging effect,” Fiber Integr. Opt. 16, 73–81 (1997).
[CrossRef]

IEEE J. Quantum Electron.

F. Ito, M. Matsuura, T. Tanifuji, “A carrier injection type optical switch in GaAs using free carrier plasma dispersion with wavelength range from 1.06 to 1.55 μm,” IEEE J. Quantum Electron. 25, 1677–1681 (1989).
[CrossRef]

H. H. El-Refaei, D. A. M. Khalil, “Design of strip-loaded weak-guiding multimode interference structure for an optical router,” IEEE J. Quantum Electron. 34, 2286–2290 (1998).
[CrossRef]

IEEE Microwave Wireless Components Lett.

T. J. Tayag, M. B. Steer, J. F. Harvey, A. B. Yakovlev, J. Davis, “Spatial power splitting and combining based on the Talbot effect,” IEEE Microwave Wireless Components Lett. 12, 9–11 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

L. J. Harrison, T. J. Tayag, G. J. Simonis, M. Stead, G. W. Euliss, R. P. Leavitt, “Monolithic integration of 1.3-μm Stark-ladder electroabsorption waveguide modulators with multimode-interference splitters,” IEEE Photon. Technol. Lett. 12, 657–659 (2000).
[CrossRef]

IEEE Photonics Technol. Lett.

M. R. Paiam, C. F. Janz, R. I. MacDonald, J. N. Broughton, “Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference,” IEEE Photonics Technol. Lett. 7, 1180–1182 (1995).
[CrossRef]

J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E.-H. Lee, S.-G. Park, D. W. Woo, S. Kim, B.-H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photonics Technol. Lett. 15, 72–74 (2003).
[CrossRef]

D. S. Levy, R. Scarmozzino, Y. M. Li, R. M. Osgood, “A new design for ultracompact multimode interference-based 2 × 2 couplers,” IEEE Photonics Technol. Lett. 10, 96–98 (1998).
[CrossRef]

D. S. Levy, R. Scarmozzino, R. M. Osgood, “Length reduction of tapered N × N MMI devices,” IEEE Photonics Technol. Lett. 10, 830–832 (1998).
[CrossRef]

D. S. Levy, K. H. Park, R. Scarmozzino, R. M. Osgood, C. Dries, P. Studenkov, S. Forrest, “Fabrication of ultracompact 3-dB 2 × 2 MMI power splitters,” IEEE Photonics Technol. Lett. 11, 1009–1011 (1999).
[CrossRef]

B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, “Low-loss 1 × 2 multimode interference wavelength demultiplexer in silicon-germanium alloy,” IEEE Photonics Technol. Lett. 11, 575–577 (1999).
[CrossRef]

T. J. Tayag, D. M. Mackie, G. W. Bryant, “A manufacturable technique for implementing low-loss self-imaging waveguide beamsplitters,” IEEE Photonics Technol. Lett. 7, 896–898 (1995).
[CrossRef]

J. Appl. Phys.

J. C. Campbell, T. Li, “Electro-optic multimode waveguide modulator or switch,” J. Appl. Phys. 50, 6149–6154 (1979).
[CrossRef]

J. Lightwave Technol.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

M. P. Earnshaw, D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightwave Technol. 20, 643–650 (2002).
[CrossRef]

S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, “Multimode interference photonic switches (MIPS),” J. Lightwave Technol. 20, 675–681 (2002).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightwave Technol. 10, 1843–1850 (1992).
[CrossRef]

Jpn. J. Appl. Phys.

S. Nagai, G. Morishima, M. Yagi, K. Utaka, “InGaAsP/InP multi-mode interference photonic switches for monolithic photonic integrated circuits,” Jpn. J. Appl. Phys. 38, pt. 1, 1269–1272 (1999).
[CrossRef]

Microwave Opt. Technol. Lett.

C. Aramburu, C. Vazquez, M. Galarza, M. Lopez-Amo, J. M. S. Pena, “Mode filter using multimode interference principles: design and tolerance analysis for accessing waveguides supporting two guided modes,” Microwave Opt. Technol. Lett. 26, 140–142 (2000).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “Design of a 2*2 MMI MZI SOI electro-optic switch covering C band and L band,” Microwave Opt. Technol. Lett. 33, 262–265 (2002).
[CrossRef]

P. Zhao, J. Chrostowski, W. J. Bock, “Novel multimode coupler switch,” Microwave Opt. Technol. Lett. 17, 1–7 (1998).
[CrossRef]

C.-H. Lien, H.-H. Lin, S.-W. Weng, H.-J. Wang, W.-C. Chang, “A compact photonic switch based on multimode interference with partial index-modulation regions,” Microwave Opt. Technol. Lett. 33, 174–176 (2002).
[CrossRef]

Opt. Eng.

D. M. Mackie, T. J. Tayag, T. E. Batchman, “Polarization separation/combination based on self-imaging,” Opt. Eng. 40, 2265–2272 (2001).
[CrossRef]

Opt. Express

Opto-Electron. Rev.

M. Blahut, A. Opilski, “Multimode interference structures-new way of passive elements technology for photonics,” Opto-Electron. Rev. 9, 293–300 (2001).

Other

D. M. Mackie, T. J. Tayag, “Modeling of self-imaging integrated optical power splitters,” in Proceedings of the Fifth Biennial DoD Photonics Conference, L. D. Pierce, ed. (Armed Forces Communications and Electronics Association, Fairfax, Va., 1996), pp. 59–64.

E. T. Kunkee, C. Zmudzinski, L. J. Lembo, J. Leight, R. Johnson, F. Alvarez, D. Nichols, J. C. Brock, “Analog signal splitting and amplification for optically-controlled phased-array antennas,” in Optical Amplifiers and Their Applications, M. N. Zervas, A. E. Willner, S. Sasaki, eds., Vol. 16 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 209–212.

E. T. Kunkee, C. Zmudzinski, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, “Simultaneous optical amplification and splitting for lower noise and higher gain microwave signal distribution,” in Optical Technology for Microwave Applications VIII, A. P. Goutzoulis, ed., Proc. SPIE3160, 89–96 (1997).
[CrossRef]

B. Lee, E. Kim, H. K. Kim, D. M. Mackie, C. M. Fitzpatrick, “Integrated-optic, lossless beamsplitters,” in Radio Frequency Photonic Devices and Systems, A. R. Pirich, A. P. Goutzoulis, P. L. Repak, eds., Proc. SPIE4112, 101–108 (2000).
[CrossRef]

D. M. Mackie, H. K. Kim, C. M. Fitzpatrick, “Integrated, optically-pumped, lossless splitters: progress and challenges,” presented at the 22nd Army Science Conference, Baltimore, Md., 11–13 December 2000.

D. M. Mackie, “End-pumped waveguide optical splitter-amplifiers based on self-imaging,” U.S. patent6,178,276 (23January2001).

W.-C. Chang, H.-J. Wang, H.-H. Lin, S.-W. Weng, P.-S. Tsai, “A novel multimode interference optoelectronic AND gate with partial index-modulation regions,” in 2001 International Symposium on Electron Devices for Microwave and Optoelectronic Applications (IEEE, Piscataway, N.J., 2001), pp. 335–337.

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “An SOI X-crossing optical switch,” in Solar and Switching Materials, C. M. Lampert, C.-G. Granqvist, K. L. Lewis, eds., Proc. SPIE4458, 269–277 (2001).
[CrossRef]

S.-L. Tsao, H.-C. Guo, Y.-J. Chen, “A novel wavelength switch with a 2 × 2 MMI SOI photonic crystal inside,” in Materials and Devices for Photonic Crystals II, M. N. Armenise, ed., Proc. SPIE4453, 162–169 (2001).

D. Kuykendall, C. L. Reitsma, T. J. Tayag, D. M. Mackie, L. J. Harrison, G. W. Euliss, R. P. Leavitt, “Wavelength division multiplexing coupler based on Talbot self-imaging in planar optical waveguides,” in Proceedings of the Eleventh National Conference on Undergraduate Research (University of North Carolina, Asheville, N.C., 1997), Vol. III, pp. 1215–1219.

D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,838,842 (17November1998).

D. M. Mackie, “Self-imaging waveguide optical polarization or wavelength splitters,” U.S. patent5,852,691 (22December1998).

T. Tayag, T. Batchman, “Self-imaging waveguide devices for wavelength division multiplexing applications,” U.S. patent5,862,288 (19January1999).

G. Kim, B. Kang, S. Lee, H. Chang, M. Choi, S. Lee, D. Woo, S. Kim, “A multimode-interferenced electrooptic TE/TM mode splitter,” in Pacific Rim Conference on Lasers and Electro-Optics (IEEE, Piscataway, N.J., 1999), Vol. 2, pp. 565–566.

D. M. Mackie, A. W. Lee, “Slotted multimode interference devices for reduced-length integrated optical wavelength or polarization splitters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, Md., 1–6 June 2003.

T. J. Tayag, “Easily manufacturable optical self-imaging waveguide,” U.S. patent5,640,474 (17June1997).

A. J. P. Hnatiw, R. I. MacDonald, P. S. Apte, W. D. MacDonald, “A silica based integrated optic microwave power sensor,” in Applications of Photonic Technology. 2. Communications, Sensing, Materials, and Signal Processing, G. A. Lampropoulos, R. A. Lessard, eds. (Plenum, New York, 1997), pp. 831–836.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Perspective views (not to scale) of (a) standard and (b) slotted MMI devices, which have been fabricated by etching, showing the input ridge waveguide, the MMI region, the crossed output ridge waveguide, the barred output ridge waveguide, and the slot region (shown here as an etched slot).

Fig. 2
Fig. 2

Top view of the simulated field intensity through an MMI device with a single centered slot having width 0.7 μm and n slot = 2.9965, from the offset input to the first self-image.

Fig. 3
Fig. 3

Schematic top view of polarization (wavelength) splitter device.

Fig. 4
Fig. 4

Sensitivity of the throughput to the slot width error, for (a) TE and (b) TM light.

Fig. 5
Fig. 5

Schematic top view of a single-slotted MMI switch with the slot off (crossed output) and on (barred output).

Fig. 6
Fig. 6

Schematic top view of a horizontal MEMS slotted MMI switch, with the slot (a) closed and (b) open.

Fig. 7
Fig. 7

Schematic end-on view of a vertical MEMS slotted MMI switch, with the slot (a) closed and (b) open.

Fig. 8
Fig. 8

Schematic top view of a switchable polarization (wavelength) splitter, with the slot (a) off and (b) on.

Fig. 9
Fig. 9

Top view of the simulated field intensity through glass MMI devices: (a) no slot, (b) one slot, (c) two slots, and (d) three slots.

Fig. 10
Fig. 10

Schematic top view of an MMI switch with one permanent slot (solid gray) and two switchable slots (cross hatched), with the switchable slots off (crossed output) and on (barred output).

Fig. 11
Fig. 11

Schematic top view of an MMI switch with two permanent slots (solid gray) and three switchable slots (cross hatched and dashed), with the switchable slots off (crossed output) and on (barred output).

Fig. 12
Fig. 12

Heuristic explanation of the functioning of an MMI device with two slots. The real (input and output) images are indicated by open circles; intermediate “phantom” images are indicated by grayed-out filled circles.

Fig. 13
Fig. 13

Transition from standard waveguide coupler to slotted MMI to standard MMI, for n region = 1.50. The values of n slot are as follows: (a) 1.00 (i.e., waveguide coupler), (b) 1.10, (c) 1.20, (d) 1.30, (e) 1.35, (f) 1.39 (self-imaging length halved), (g) 1.43, (h) 1.46, (i) 1.50 (i.e., no slot, standard MMI).

Fig. 14
Fig. 14

Effect of an “antislot” on self-imaging, for n region = 1.50: (a) no slot (standard MMI), n slot = 1.50; (b) self-image length quartered, n slot = 1.58; (c) another resonance, n slot = 1.74.

Tables (4)

Tables Icon

Table 1 Phase Delays (Units of π) for Case of No Slot and z = L 0, for Modes 1–8

Tables Icon

Table 2 Phase Delays (Units of π) for Case of One Slot and z = L 0/2, for Modes 1–8

Tables Icon

Table 3 Phase Delays (Units of π) for Case of Two Slots and z = L 0/3, for Modes 1–8

Tables Icon

Table 4 Phase Delays (Units of π) for Case of Three Slots and z = L 0/4, for Modes 1–8

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L4nregionW2/λ.
ϕm= πp2zL0,

Metrics