Abstract

Improvements to an algorithm for performing spectral unmixing of hyperspectral imagery based on the stochastic mixing model (SMM) are presented. The SMM provides a method for characterizing both subpixel mixing of the pure image constituents, or endmembers, and statistical variation in the endmember spectra that is due, for example, to sensor noise and natural variability of the pure constituents. Modifications of the iterative, expectation maximization approach to deriving the SMM parameter estimates are proposed, and their effects on unmixing performance are characterized. These modifications specifically concern algorithm initialization, random class assignment, and mixture constraints. The results show that the enhanced stochastic mixing model provides a better statistical representation of hyperspectral imagery from the perspective of achieving greater endmember class separation.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE)

Anthony M. Filippi, Rick Archibald, Budhendra L. Bhaduri, and Edward A. Bright
Opt. Express 17(26) 23823-23842 (2009)

Algorithm validation using multicolor phantoms

Daniel V. Samarov, Matthew L. Clarke, Ji Youn Lee, David W. Allen, Maritoni Litorja, and Jeeseong Hwang
Biomed. Opt. Express 3(6) 1300-1311 (2012)

Spectral unmixing method for multi-pixel energy dispersive x-ray diffraction systems

Tianyi YangDai and Li Zhang
Appl. Opt. 56(4) 907-915 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (17)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription