Abstract

Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Compact liquid-crystal-polymer Fourier-transform spectrometer

Gerben Boer, Patrick Ruffieux, Toralf Scharf, Peter Seitz, and René Dändliker
Appl. Opt. 43(11) 2201-2208 (2004)

High-performance nonscanning Fourier-transform spectrometer that uses a Wollaston prism array

Dan Komisarek, Karl Reichard, Dan Merdes, Dan Lysak, Philip Lam, Shudong Wu, and Shizhuo Yin
Appl. Opt. 43(20) 3983-3988 (2004)

Lamellar grating optimization for miniaturized fourier transform spectrometers

Onur Ferhanoglu, Hüseyin R. Seren, Stephan Lüttjohann, and Hakan Urey
Opt. Express 17(23) 21289-21301 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (51)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics