Abstract

We present a method for repairing defects near the top surfaces of multilayer coatings in general and specifically on extreme-ultraviolet lithography mask blanks. Milling away the defect and a surrounding region of the multilayer by use of a focused ion beam can repair both the reflectivity and the phase of the reflected light in the vicinity of such a defect. We describe the conditions under which the repaired region will not itself be a defect and experimentally demonstrate the feasibility of this multilayer repair technique. The results described are also applicable to understanding and controlling the optical effects of ion-induced multilayer erosion.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
    [CrossRef]
  2. P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
    [CrossRef]
  3. A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
    [CrossRef]
  4. S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
    [CrossRef]
  5. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–693 (1942).
    [CrossRef]
  6. M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. A 11, 2019–2026 (1985).
    [CrossRef]
  7. D. G. Stearns, D. W. Sweeney, P. B. Mirkarimi, H. N. Chapman, “A method to repair localised amplitude defects in EUV lithography mask blanks,” U.S. patent application 20,030,006,214 (9January2003).
  8. E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).
  9. A. R. Stivers, E. Tejnil, “Dependence of mask defect printability and printability criteria on lithography process resolution,” in 21st Annual BACUS Symposium on Photomask Technology, G. T. Dao, B. J. Grenon, eds., Proc. SPIE4562, 122–129 (2002).
    [CrossRef]
  10. P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
    [CrossRef]
  11. P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).
  12. D. G. Stearns, P. B. Mirkarimi, E. Spiller, “Localized defects in EUV multilayer coatings,” Thin Solid Films 46, 37–49 (2004).
    [CrossRef]

2004 (2)

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

D. G. Stearns, P. B. Mirkarimi, E. Spiller, “Localized defects in EUV multilayer coatings,” Thin Solid Films 46, 37–49 (2004).
[CrossRef]

2002 (1)

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

2001 (2)

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

2000 (1)

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

1985 (1)

M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. A 11, 2019–2026 (1985).
[CrossRef]

1942 (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–693 (1942).
[CrossRef]

Baker, S. L.

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

Barty, A.

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Cerjan, C.

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

Chapman, H.

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Chapman, H. N.

D. G. Stearns, D. W. Sweeney, P. B. Mirkarimi, H. N. Chapman, “A method to repair localised amplitude defects in EUV lithography mask blanks,” U.S. patent application 20,030,006,214 (9January2003).

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

Clift, M.

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Elmer, J. W.

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

Gullikson, E.

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Gullikson, E. M.

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

Hau-Riege, S.

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Hector, S.

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

Liang, T.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

Livengood, R.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

Lo, F.-C.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

Mirkarimi, P. B.

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

D. G. Stearns, P. B. Mirkarimi, E. Spiller, “Localized defects in EUV multilayer coatings,” Thin Solid Films 46, 37–49 (2004).
[CrossRef]

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

D. G. Stearns, D. W. Sweeney, P. B. Mirkarimi, H. N. Chapman, “A method to repair localised amplitude defects in EUV lithography mask blanks,” U.S. patent application 20,030,006,214 (9January2003).

Sperry, V.

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

Spiller, E.

D. G. Stearns, P. B. Mirkarimi, E. Spiller, “Localized defects in EUV multilayer coatings,” Thin Solid Films 46, 37–49 (2004).
[CrossRef]

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

Spiller, E. A.

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

Stearns, D. G.

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

D. G. Stearns, P. B. Mirkarimi, E. Spiller, “Localized defects in EUV multilayer coatings,” Thin Solid Films 46, 37–49 (2004).
[CrossRef]

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

D. G. Stearns, D. W. Sweeney, P. B. Mirkarimi, H. N. Chapman, “A method to repair localised amplitude defects in EUV lithography mask blanks,” U.S. patent application 20,030,006,214 (9January2003).

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Stivers, A.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

Stivers, A. R.

A. R. Stivers, E. Tejnil, “Dependence of mask defect printability and printability criteria on lithography process resolution,” in 21st Annual BACUS Symposium on Photomask Technology, G. T. Dao, B. J. Grenon, eds., Proc. SPIE4562, 122–129 (2002).
[CrossRef]

Sweeney, D.

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Sweeney, D. W.

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

D. G. Stearns, D. W. Sweeney, P. B. Mirkarimi, H. N. Chapman, “A method to repair localised amplitude defects in EUV lithography mask blanks,” U.S. patent application 20,030,006,214 (9January2003).

Teague, M. R.

M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. A 11, 2019–2026 (1985).
[CrossRef]

Tejnil, E.

A. R. Stivers, E. Tejnil, “Dependence of mask defect printability and printability criteria on lithography process resolution,” in 21st Annual BACUS Symposium on Photomask Technology, G. T. Dao, B. J. Grenon, eds., Proc. SPIE4562, 122–129 (2002).
[CrossRef]

Yan, P.-Y.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

Yi, M.

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

Zernike, F.

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–693 (1942).
[CrossRef]

Zhang, G.

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. B. Mirkarimi, E. A. Spiller, D. G. Stearns, V. Sperry, S. L. Baker, “An ion-assisted Mo–Si deposition process for planarising reticle substrates for extreme ultraviolet lithography,” IEEE J. Quantum Electron. 37, 1514–1516 (2001).
[CrossRef]

J. Appl. Phys. (1)

P. B. Mirkarimi, D. G. Stearns, S. L. Baker, J. W. Elmer, D. W. Sweeney, E. M. Gullikson, “Methods for repairing Mo–Si multilayer thin film phase defects in reticles for extreme ultraviolet lithography,” J. Appl. Phys. 91, 81–89 (2002).
[CrossRef]

J. Microlithogr. Microfabr. Microsyst. (1)

P. B. Mirkarimi, E. Spiller, S. L. Baker, V. Sperry, D. G. Stearns, “Developing a viable multilayer coating process for EUVL reticles,” J. Microlithogr. Microfabr. Microsyst. 3, 139–145 (2004).

J. Opt. Soc. Am. A (1)

M. R. Teague, “Image formation in terms of the transport equation,” J. Opt. Soc. Am. A 11, 2019–2026 (1985).
[CrossRef]

J. Vac. Sci. Technol. (1)

E. M. Gullikson, C. Cerjan, D. G. Stearns, P. B. Mirkarimi, D. W. Sweeney, “A practical approach for modelling EUVL mask defects,” J. Vac. Sci. Technol. 20, 81–86 (2001).

J. Vac. Sci. Technol. B (1)

T. Liang, A. Stivers, R. Livengood, P.-Y. Yan, G. Zhang, F.-C. Lo, “Progress in EUV mask repair using a focussed ion beam,” J. Vac. Sci. Technol. B 18, 3216–3220 (2000).
[CrossRef]

Physica (1)

F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 686–693 (1942).
[CrossRef]

Thin Solid Films (1)

D. G. Stearns, P. B. Mirkarimi, E. Spiller, “Localized defects in EUV multilayer coatings,” Thin Solid Films 46, 37–49 (2004).
[CrossRef]

Other (4)

A. Barty, P. B. Mirkarimi, D. G. Stearns, D. Sweeney, H. N. Chapman, M. Clift, S. Hector, M. Yi, “EUVL mask blank repair,” in Emerging Lithographic Technologies VI, R. L. Engelstad, ed., Proc. SPIE4688, 385–394 (2002).
[CrossRef]

S. Hau-Riege, A. Barty, P. B. Mirkarimi, D. G. Stearns, H. Chapman, D. Sweeney, M. Clift, E. Gullikson, M. Yi, “Defect repair for extreme ultraviolet lithography (EUVL) mask blanks,” in Emerging Lithographic Technologies VII, R. L. Engelstad, ed., Proc. SPIE5037, 331–338 (2003).
[CrossRef]

A. R. Stivers, E. Tejnil, “Dependence of mask defect printability and printability criteria on lithography process resolution,” in 21st Annual BACUS Symposium on Photomask Technology, G. T. Dao, B. J. Grenon, eds., Proc. SPIE4562, 122–129 (2002).
[CrossRef]

D. G. Stearns, D. W. Sweeney, P. B. Mirkarimi, H. N. Chapman, “A method to repair localised amplitude defects in EUV lithography mask blanks,” U.S. patent application 20,030,006,214 (9January2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Amplitude-repair technique: (a) amplitude-defect removal by use of a focused ion beam. (b) amplitude defect after repair. A small crater remains in the multilayer.

Fig. 2
Fig. 2

Reflectivity of a Mo-Si multilayer as a function of number of layers.

Fig. 3
Fig. 3

(a) Contrast variation as a function of crater diameter and depth (in bilayers). (b) Minimum crater diameter d as a function of allowed contrast variation and repair-site depth (in bilayers).

Fig. 4
Fig. 4

Image placement error caused when the pattern is placed within the crater.

Fig. 5
Fig. 5

(a) Aerial image calculation for an isolated line with a proximity amplitude defect before defect repair. (b) Aerial image calculation of the same region after amplitude-defect repair.

Fig. 6
Fig. 6

CD change in the printed line as a function of a drop in reflectivity inside the cratered region.

Fig. 7
Fig. 7

(a) Calculated reflectivity across repair site for a silicon oxide (SiO2) capping layer. (b) Calculated reflectivity across repair site for a silicon carbide (SiC) capping layer.

Fig. 8
Fig. 8

In situ ion-beam sputtering is used to apply a localized capping layer to the repaired region. (a) Argon-ion beam sputtering is used to create a crater in the multilayer. The crater is the repair zone. (b) A capping layer is sputtered from the target onto the repair zone. (c) Top-down optical microscope picture of the repair zone.

Fig. 9
Fig. 9

Reflectance maps (a) without a capping layer and (b) with a carbon capping layer. Also shown are lineouts of the reflectance at different locations along the crater. The maximum variation in reflectance, R max, is 7.4% for (a) and, top to bottom, 4.0%, 3.7%, 3.0%, and 7.2% for (b).

Fig. 10
Fig. 10

Measured best-case reflectance loss for uncoated craters and for craters coated with C, SiC, Si, SiN, and Ru. The error bars indicate 90% confidence intervals.

Fig. 11
Fig. 11

(a) Printable defect size classification in terms of defect nucleus size and depth within the multilayer using the criterion described in the text, and the corresponding classes of defects that are repairable using (b) amplitude defect repair and (c) phase defect repair.

Fig. 12
Fig. 12

Improvement in yield as repair strategies improve. ML, middle layer.

Fig. 13
Fig. 13

Dependence of yield on the number of multilayers deposited on the mask blank.

Tables (1)

Tables Icon

Table 1 Image Placement Errors for Absorber Features

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ψr=exp2πipr/λ,
Ir=1+Δzk 2ϕr,
pr=2n-1h exp-r2/ω2,
2exp-r2/ω2=-2ω2-r2ω4 exp-r2/ω2,
Ii=1+21-nΔzk ηmi/ω2,
C=Imax-IminImax+Imin,
C21-nΔzhω2mmax-mmin2.
Cmax=1.45 1-nNnω/δ2,
δx=Md tan θ,
DOF±λ2NA2.
Nd0.02d-0.54,

Metrics