Abstract

A method that uses tunable diode lasers is developed for rapid temperature and concentration measurements of gases with highly broadened and congested spectra. Wavelength modulation absorption spectroscopy with 2f detection is utilized, because this derivative method offers benefits in dealing with blended spectral features. The 2f signal depends critically on the modulation depth of the laser a, which is increased to values above those typically achieved when wavelength modulation spectroscopy with diode lasers is performed. The 2f method with large modulation depths is validated by using near-IR diode lasers to probe pressure-broadened water-vapor features in the 1.4-μm region over a range of temperatures from 296 to 800 K and at pressures as high as 20 atm. Modulation depths as high as a = 0.8 cm-1 are attained at modulation frequencies of 50 kHz and measurement bandwidths of 15 kHz. Comparisons of experimental results with 2f simulations, based on the HITRAN spectral database, provide confirmation of the capability of this method for rapid measurements of gas temperature and species concentration.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription