Abstract

Despite the large neutral atomic and ionic emission enhancements that have been noted in collinear and orthogonal dual-pulse laser-induced breakdown spectroscopy, the source or sources of these significant signal and signal-to-noise ratio improvements have yet to be explained. In the research reported herein, the combination of a femtosecond preablative air spark and a nanosecond ablative pulse yields eightfold and tenfold material removal improvement for brass and aluminum, respectively, but neutral atomic emission is enhanced by only a factor of 3–4. Additionally, temporal correlation between enhancement of material removal and of atomic emission is quite poor, suggesting that the atomic-emission enhancements noted in the femtosecond–nanosecond pulse configuration result in large part from some source other than simple improvement in material removal.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).
  2. L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).
  3. Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, Huntington, N.Y., 2000).
  4. V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
    [CrossRef]
  5. D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
    [CrossRef]
  6. C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
    [CrossRef]
  7. M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
    [CrossRef]
  8. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
    [CrossRef]
  9. J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
    [CrossRef]
  10. A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078–2084 (2003).
    [CrossRef] [PubMed]
  11. B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
    [CrossRef]
  12. R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
    [CrossRef]
  13. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
    [CrossRef]
  14. P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
    [CrossRef]
  15. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
    [CrossRef]
  16. A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
    [CrossRef]
  17. D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
    [CrossRef]
  18. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
    [CrossRef]
  19. P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
    [CrossRef]
  20. K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).
  21. D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
    [CrossRef]
  22. S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
    [CrossRef]
  23. G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
    [CrossRef]
  24. K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
    [CrossRef]
  25. V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
    [CrossRef]
  26. V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
    [CrossRef]
  27. K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
    [CrossRef]
  28. C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).
  29. Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
    [CrossRef]
  30. Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
    [CrossRef]
  31. H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
    [CrossRef]
  32. L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
    [CrossRef]
  33. V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
    [CrossRef]
  34. F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
    [CrossRef]
  35. L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
    [CrossRef]
  36. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
    [CrossRef]
  37. D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
    [CrossRef]
  38. D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
    [CrossRef]
  39. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
    [CrossRef]
  40. J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
    [CrossRef] [PubMed]
  41. J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, S. M. Angel, “Spatial and temporal dependence of interspark interactions in femtosecond–nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5243–5250.
  42. A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt. Lett. 21, 603–605 (1996).
    [CrossRef] [PubMed]
  43. G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
    [CrossRef]

2003

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
[CrossRef]

V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
[CrossRef]

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078–2084 (2003).
[CrossRef] [PubMed]

J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
[CrossRef] [PubMed]

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

2002

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
[CrossRef]

2001

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

2000

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

1998

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

1997

1996

A. Sullivan, J. Bonlie, D. F. Price, W. E. White, “1.1-J, 120-fs laser system based on Nd:glass-pumped Ti:sapphire,” Opt. Lett. 21, 603–605 (1996).
[CrossRef] [PubMed]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

1995

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

1992

1991

1984

1962

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Angel, S. M.

J. Scaffidi, J. Pender, B. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42, 6099–6106 (2003).
[CrossRef] [PubMed]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

J. Scaffidi, W. Pearman, M. Lawrence, J. C. Carter, B. W. Colston, S. M. Angel, “Spatial and temporal dependence of interspark interactions in femtosecond–nanosecond dual-pulse laser-induced breakdown spectroscopy,” Appl. Opt. 43, 5243–5250.

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Bauerle, D.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Berg, M. A.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

Bolshov, M.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Bonlie, J.

Brech, F.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Bruneau, S.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Brunetti, G.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Brust, J.

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

Burns, D. B.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Capitelli, F.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Carranza, J. E.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Carter, J. C.

Castle, B. C.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Cha, H. K.

Cielo, P.

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

Colao, F.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Colston, B. W.

Cook, R. L.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Corbett, R. E.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Cremers, D. A.

Cross, L.

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Davies, C. M.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Deguchi, Y.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
[CrossRef]

Detalle, V.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

Dumitru, G.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Eland, K. L.

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

Fantoni, R.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Fedosejevs, R.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
[CrossRef]

Feng, S.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Ferris, M. J.

Fichet, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Fisher, B. T.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

French, N. B.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

French, P. D.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Gerbig, Y.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Gold, D. M.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

Goode, S. R.

Gruber, J.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

Haas, W. J.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Haefke, H.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Hahn, D. W.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Harmon, R. S.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Heitz, J.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

Hergenroder, R.

V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Hermann, J.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Iwasaki, S.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
[CrossRef]

Joseph, M. R.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Kim, G. H.

Knight, A. K.

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Lai, T.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

Lawrence, M.

Lazic, V.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Lee, G. H.

Lee, J. M.

Lee, Y. I.

Leis, F.

Lemieux, P. M.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Loree, T. R.

Majidi, V.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

Margetic, V.

V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Marine, W.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Marquardt, B. J.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Matsuta, H.

Mauchien, P.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

McNesby, K. L.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Miziolek, A. W.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Monch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

Montgomery, D. J.

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Monts, D. L.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Moulin, C.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Niemax, K.

V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

Noda, M.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
[CrossRef]

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Pakulev, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

Park, M. C.

Pearman, B.

Pearman, W.

Pender, J.

Pershin, S.

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Price, D. F.

Priebe, S. J.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Provenzano, M. R.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Radziemski, L. J.

Rai, A. K.

Ramaseder, N.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

Rieger, G. W.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
[CrossRef]

Rigsby, J. T.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Romano, V.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Rusak, D. A.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Ryan, J. V.

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Sabsabi, M.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Scaffidi, J.

Scherbarth, N. L.

Sdorra, W.

Senesi, N.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Sentis, M.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Singh, J. P.

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078–2084 (2003).
[CrossRef] [PubMed]

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Smith, B. W.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Sneddon, J.

Song, K.

Stockhaus, A.

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

St-Onge, L.

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

Strasser, H.

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

Stratis, D. N.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

Su, C. F.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Sullivan, A.

Taschuk, M.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
[CrossRef]

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Teng, Y. Y.

Thiem, T. L.

Tsui, Y. Y.

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
[CrossRef]

Uebbing, J.

Wagatsuma, K.

Wagner, J. F.

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Wainner, R. T.

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Weber, H. P.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

White, W. E.

Winefordner, J. D.

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Yoder, G. D.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

Yoshikawa, N.

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
[CrossRef]

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Yueh, F. Y.

A. K. Rai, F. Y. Yueh, J. P. Singh, “Laser-induced breakdown spectroscopy of molten aluminum alloy,” Appl. Opt. 42, 2078–2084 (2003).
[CrossRef] [PubMed]

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Anal. Chem.

B. J. Marquardt, S. R. Goode, S. M. Angel, “In situ determination of lead in paint by laser-induced breakdown spectroscopy using a fiber-optic probe,” Anal. Chem. 68, 977–981 (1996).
[CrossRef]

Anal. Chim. Acta

P. Fichet, P. Mauchien, J. F. Wagner, C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).
[CrossRef]

Appl. Opt.

Appl. Spectrosc.

H. Matsuta, K. Wagatsuma, “Emission characteristics of a low-pressure laser-induced plasma: selective excitation of ionic emission lines of copper,” Appl. Spectrosc. 56, 1165–1169 (2002).
[CrossRef]

K. L. Eland, D. N. Stratis, T. Lai, M. A. Berg, S. R. Goode, S. M. Angel, “Some comparisons of LIBS measurements using nanosecond and picosecond laser pulses,” Appl. Spectrosc. 55, 279–285 (2001).
[CrossRef]

K. L. Eland, D. N. Stratis, D. M. Gold, S. R. Goode, S. M. Angel, “Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation,” Appl. Spectrosc. 55, 286–291 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a preablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55, 1297–1303 (2001).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Enhancement of aluminum, titanium, and iron in glass using pre-ablation spark dual-pulse LIBS,” Appl. Spectrosc. 54, 1719–1726 (2000).
[CrossRef]

D. N. Stratis, K. L. Eland, S. M. Angel, “Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission,” Appl. Spectrosc. 54, 1270–1274 (2000).
[CrossRef]

V. Sturm, L. Peter, R. Noll, “Steel analysis with laser-induced breakdown spectrometry in the vacuum ultraviolet,” Appl. Spectrosc. 54, 1275–1278 (2000).
[CrossRef]

A. K. Knight, N. L. Scherbarth, D. A. Cremers, M. J. Ferris, “Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration,” Appl. Spectrosc. 54, 331–340 (2000).
[CrossRef]

Y. I. Lee, T. L. Thiem, G. H. Kim, Y. Y. Teng, J. Sneddon, “Interaction of an excimer-laser beam with metals. III. The effect of a controlled atmosphere in laser-ablated plasma emission,” Appl. Spectrosc. 46, 1597–1604 (1992).
[CrossRef]

J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, “Reheating of a laser-produced plasma by a second pulse laser,” Appl. Spectrosc. 45, 1419–1423 (1991).
[CrossRef]

D. A. Cremers, L. J. Radziemski, T. R. Loree, “Spectrochemical analysis of liquids using the laser spark,” Appl. Spectrosc. 38, 721–729 (1984).
[CrossRef]

Y. I. Lee, K. Song, H. K. Cha, J. M. Lee, M. C. Park, G. H. Lee, J. Sneddon, “Influence of atmosphere and irradiation wavelength on copper plasma emission induced by excimer and Q-switched Nd:YAG laser ablation,” Appl. Spectrosc. 51, 959–964 (1997).
[CrossRef]

F. Brech, L. Cross, “Optical microemission stimulated by a ruby maser,” Appl. Spectrosc. 16, 59 (1962).

Appl. Surf. Sci.

G. Dumitru, V. Romano, H. P. Weber, M. Sentis, J. Hermann, S. Bruneau, W. Marine, H. Haefke, Y. Gerbig, “Metallographical analysis of steel and hard metal substrates after deep-drilling with femtosecond laser pulses,” Appl. Surf. Sci. 208-209, 181–188 (2003).
[CrossRef]

Crit. Rev. Anal. Chem.

V. Majidi, M. R. Joseph, “Spectroscopic applications of laser-induced plasmas,” Crit. Rev. Anal. Chem. 23, 143–162 (1992).
[CrossRef]

D. A. Rusak, B. C. Castle, B. W. Smith, J. D. Winefordner, “Fundamentals and applications of laser-induced breakdown spectroscopy,” Crit. Rev. Anal. Chem. 27, 257–290 (1997).
[CrossRef]

Fresnius J. Anal. Chem.

S. M. Angel, D. N. Stratis, K. L. Eland, T. Lai, M. A. Berg, D. M. Gold, “LIBS using dual- and ultra-short laser pulses,” Fresnius J. Anal. Chem. 369, 320–327 (2001).
[CrossRef]

Geoderma

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Glass Technol.

C. F. Su, S. Feng, J. P. Singh, F. Y. Yueh, J. T. Rigsby, D. L. Monts, R. L. Cook, “Glass composition measurement using laser induced breakdown spectrometry,” Glass Technol. 41, 16–21 (2000).

Opt. Eng.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liska, H. H. Telle, J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 2248–2262 (2000).
[CrossRef]

Opt. Lett.

Spectrochim. Acta B

L. St-Onge, M. Sabsabi, P. Cielo, “Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode,” Spectrochim. Acta B 53, 407–415 (1998).
[CrossRef]

F. Colao, V. Lazic, R. Fantoni, S. Pershin, “A comparison of single and double pulse laser-induced breakdown spectroscopy of aluminum samples,” Spectrochim. Acta B 57, 1167–1179 (2002).
[CrossRef]

L. St-Onge, V. Detalle, M. Sabsabi, “Enhanced laser-induced breakdown spectroscopy using the combination of fourth-harmonic and fundamental Nd:YAG laser pulses,” Spectrochim. Acta B 57, 121–135 (2002).
[CrossRef]

G. W. Rieger, M. Taschuk, Y. Y. Tsui, R. Fedosejevs, “Comparative study of laser-induced plasma emission from microjoule picosecond and nanosecond KrF-laser pulses,” Spectrochim. Acta B 58, 497–510 (2003).
[CrossRef]

V. Margetic, K. Niemax, R. Hergenroder, “A study of non-linear calibration graphs for brass with femtosecond laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 1003–1010 (2003).
[CrossRef]

V. Margetic, A. Pakulev, A. Stockhaus, M. Bolshov, K. Niemax, R. Hergenroder, “A comparison of nanosecond and femtosecond laser-induced plasma spectroscopy of brass samples,” Spectrochim. Acta B 55, 1771–1785 (2000).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy,” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

M. Noda, Y. Deguchi, S. Iwasaki, N. Yoshikawa, “Detection of carbon content in a high-temperature and high-pressure environment using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 701–709 (2002).
[CrossRef]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, V. Sturm, “Laser-induced breakdown spectrometry—applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B 56, 637–649 (2001).
[CrossRef]

J. Gruber, J. Heitz, H. Strasser, D. Bauerle, N. Ramaseder, “Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 685–693 (2001).
[CrossRef]

R. T. Wainner, R. S. Harmon, A. W. Miziolek, K. L. McNesby, P. D. French, “Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments,” Spectrochim. Acta B 56, 777–793 (2001).
[CrossRef]

Waste Manage.

J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “Implementation of laser-induced breakdown spectroscopy as a continuous emissions monitor for toxic metals,” Waste Manage. 20, 455–462 (2000).
[CrossRef]

P. M. Lemieux, J. V. Ryan, N. B. French, W. J. Haas, S. J. Priebe, D. B. Burns, “Results of the September 1997 DOE/EPA demonstration of multimetal continuous emission monitoring technologies,” Waste Manage. 18, 385–391 (1998).
[CrossRef]

Other

L. J. Radziemski, D. A. Cremers, eds., Laser-Induced Plasmas and Applications (Marcel Dekker, New York, 1989).

Y. I. Lee, K. Song, J. Sneddon, Laser-Induced Breakdown Spectrometry (Nova Science, Huntington, N.Y., 2000).

K. L. Eland, D. N. Stratis, J. C. Carter, S. M. Angel, “The development of a dual-pulse fiber-optics LIBS probe for in-situ elemental analysis,” in Environmental Monitoring and Remediation Technologies II, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3853, 288–294 (1999).

D. N. Stratis, K. L. Eland, S. M. Angel, “Characterization of laser-induced plasmas for fiber-optic probes,” in Environmental Monitoring and Remediation Technologies, T. Vo-Dinh, R. Spellicy, eds., Proc. SPIE3534, 592–600 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup: A fs pulse from laser 1 forms a preablative air spark above and parallel to the surface of a solid sample several microseconds before ablation with a ns pulse from laser 2. Neutral atomic and ionic emission from the resultant ablative plasma is collected along the axis of the ablative pulse, focused onto a light guide or an optical fiber, spectrally resolved with a spectrometer (Spec), and quantified with an intensified gated CCD (ICCD) and a computer.

Fig. 2
Fig. 2

Hole profiling and volume calculation: (a) Thin metal samples (S) were anchored to dissimilar mounting blocks (B) with double-sided tape. Crater volume and per-shot mass removal were calculated as described in the text, by use of the flat-bottomed conical model shown in (b) and (c).

Fig. 3
Fig. 3

Hole size dependence on interpulse delay: SEMs of the front (ablation) and back (nonablation) sides of the holes drilled in thin aluminum (A, B) and brass (C, D) sheets illustrate the strong dependence of hole radius on interpulse delay. Although little, if any, change in hole size is visible at t d = 0, both the front (A, C) and the back (B, D) hole radii show rapid increases up to t d = -10 µs. The hole diameter appears to decrease slowly after that point, and significant substantial back-side scarring of the aluminum sample (B) becomes apparent at delays of -50 and -100 µs.

Fig. 4
Fig. 4

Sample penetration versus interpulse delay: A generally similar trend is seen for fs–ns DP LIBS of both aluminum (a) and brass (b). Introduction of the fs air spark before the ns ablative pulse shows little change at an interpulse delay of 0, followed by a precipitous drop at short interpulse delay. After a minimum of 12 shots at t d = -2.5 µs for aluminum and 170 shots at t d = -5 µs for brass near the time the fs plasma ceases neutral atomic emission (6 µs after fs plasma formation), the number of shots required for sample penetration begins a slow return toward ns single-pulse levels. Error bars represent ±2 standard deviations, n = 5, and the number of single nanosecond pulses required for sample penetration is shown to the right of t d = 0 for visual comparison with the dual-pulse data.

Fig. 5
Fig. 5

Per-shot mass removal versus interpulse delay: As in the case of the number of shots required for sample penetration (Fig. 4), aluminum (a) and brass (b) show a generally similar trend in terms of dependence of mass removal on interpulse delay. Following a slight decrease in per-shot mass removal at t d = 0, both aluminum and brass demonstrate approximately an eightfold improvement in mass removal (with maxima at t d = -2.5 µs and t d = -5 µs, respectively) before a slow fall toward ns single-pulse mass removal rates. Error bars represent ±2 standard deviations, n = 5, and the number of single nanosecond pulses required for sample penetration is shown to the right of t d = 0 for visual comparison with the dual-pulse data.

Fig. 6
Fig. 6

Dependence of neutral atomic emission enhancement on interpulse delay for aluminum and brass: Neutral atomic emission at 396 nm for aluminum in bulk aluminum (a) and at 521 nm for copper in brass (b) are both significantly enhanced by introduction of a fs preablation air spark in fs–ns DP LIBS, but the temporal dependence of those enhancements differs greatly as a function of interpulse delay.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

tan θ=T/rtop-rbottom,
tan θ=h/rtop,
Vcone=π/3rtop2h,
Vcrater=Vcone-π/3rbottom2h-T=π/3rtop2h-rbottom2h-T.

Metrics