Abstract

By using the well-known Green’s function methods, we study the three-dimensional temperature distributions and thermal deformations of the output windows of unstable optical resonators induced by an incident annular laser beam. Some expressions and theoretical profiles of the temperature distributions and thermal deformations as functions of the radius and of the thickness of optical windows are obtained. Moreover, the influence of the thermal deformations of sapphire, silica, and silicon windows within unstable optical resonators on the Strehl ratio and on the far-field laser intensity distribution is also discussed. Under conditions of 50-kW intense laser irradiation during 5 s, the maximum thermal deformation in sapphire, silica, and silicon substrates is 1.993, 0.393, and 6.251 μm, respectively. Under the same conditions the Strehl ratio of sapphire is higher than that of silica.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription