Abstract

An investigation into the spatial resolving power of a castellated linear dual-energy x-ray detector array is reported. The detector was developed for use in aviation security screening applications. Experiments employing different gauges of lead wire are used to plot a wire transfer function. A numerical simulation is developed to predict and underpin the empirical results. The suitable processing of the castellated detector signals helps to maintain spatial resolving power while affording a 50% reduction in x-ray sensing elements. This encouraging result has formed the basis for an ongoing investigation into materials discrimination capability of the castellated detector array.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.
  2. R. F. Eilbert, K. D. Krug, “Aspects of image recognition in Vivid Technology’s dual-energy X-ray system for explosive detection,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 127–143 (1992).
    [CrossRef]
  3. J. P. O. Evans, M. Robinson, “The development of 3D X-ray systems for airport security applications,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 171–182 (1992).
    [CrossRef]
  4. J. P. O. Evans, H. W. Hon, “Dynamic stereoscopic x-ray imaging,” NDT & E Int. 35, 337–345 (2002).
    [CrossRef]
  5. G. D. Boreman, ed., Modulation Transfer Function in Optical and Electro-Optical Systems, Vol. TT52 of the SPIE Tutorial Text Series (SPIE, Bellingham, Wash., 1998).
  6. V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
    [CrossRef]
  7. J. H. Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10eV and 100GeV,” NSRDS-NBS 29 (National Bureau of Standards, Washington, D.C., 1969).
  8. S. K. Park, R. A. Schowengerdt, M. A. Kaczynski, “Modulation-transfer-function analysis for sampled image systems,” Appl. Opt. 23, 2572–2582 (1984).
    [CrossRef] [PubMed]

2002 (1)

J. P. O. Evans, H. W. Hon, “Dynamic stereoscopic x-ray imaging,” NDT & E Int. 35, 337–345 (2002).
[CrossRef]

1996 (1)

V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
[CrossRef]

1984 (1)

Badot, D.

V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
[CrossRef]

Boreman, G. D.

G. D. Boreman, ed., Modulation Transfer Function in Optical and Electro-Optical Systems, Vol. TT52 of the SPIE Tutorial Text Series (SPIE, Bellingham, Wash., 1998).

Dolan, K. W.

K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.

Eilbert, R. F.

R. F. Eilbert, K. D. Krug, “Aspects of image recognition in Vivid Technology’s dual-energy X-ray system for explosive detection,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 127–143 (1992).
[CrossRef]

Evans, J. P. O.

J. P. O. Evans, H. W. Hon, “Dynamic stereoscopic x-ray imaging,” NDT & E Int. 35, 337–345 (2002).
[CrossRef]

J. P. O. Evans, M. Robinson, “The development of 3D X-ray systems for airport security applications,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 171–182 (1992).
[CrossRef]

Hon, H. W.

J. P. O. Evans, H. W. Hon, “Dynamic stereoscopic x-ray imaging,” NDT & E Int. 35, 337–345 (2002).
[CrossRef]

Hubbell, J. H.

J. H. Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10eV and 100GeV,” NSRDS-NBS 29 (National Bureau of Standards, Washington, D.C., 1969).

Kaczynski, M. A.

Kaftandjian, V.

V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
[CrossRef]

Krug, K. D.

R. F. Eilbert, K. D. Krug, “Aspects of image recognition in Vivid Technology’s dual-energy X-ray system for explosive detection,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 127–143 (1992).
[CrossRef]

Martz, H. E.

K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.

Park, S. K.

Peix, G.

V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
[CrossRef]

Rikard, R. D.

K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.

Robinson, M.

J. P. O. Evans, M. Robinson, “The development of 3D X-ray systems for airport security applications,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 171–182 (1992).
[CrossRef]

Ryon, R. W.

K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.

Schneberk, D. J.

K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.

Schowengerdt, R. A.

Zhu, Y. M.

V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
[CrossRef]

Appl. Opt. (1)

NDT & E Int. (2)

V. Kaftandjian, Y. M. Zhu, G. Peix, D. Badot, “Contrast transfer function measurement of X-ray solid state linear detectors using bar/space pattern methods,” NDT & E Int. 29, 3–11 (1996).
[CrossRef]

J. P. O. Evans, H. W. Hon, “Dynamic stereoscopic x-ray imaging,” NDT & E Int. 35, 337–345 (2002).
[CrossRef]

Other (5)

G. D. Boreman, ed., Modulation Transfer Function in Optical and Electro-Optical Systems, Vol. TT52 of the SPIE Tutorial Text Series (SPIE, Bellingham, Wash., 1998).

K. W. Dolan, R. W. Ryon, D. J. Schneberk, H. E. Martz, R. D. Rikard, “Explosives detection limitations using dual-energy radiography and computed tomography,” in Proceedings of the First International Symposium on Explosive Detection Technology, S. M. Kahn, ed. (U.S. Department of Transportation, Federal Aviation Administration, N.J., 1991), pp. 252–260.

R. F. Eilbert, K. D. Krug, “Aspects of image recognition in Vivid Technology’s dual-energy X-ray system for explosive detection,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 127–143 (1992).
[CrossRef]

J. P. O. Evans, M. Robinson, “The development of 3D X-ray systems for airport security applications,” in Applications of Signal and Image Processing in Explosives Detection Systems, J. M. Connelly, S. M. Cheung, eds., Proc. SPIE1824, 171–182 (1992).
[CrossRef]

J. H. Hubbell, “Photon cross sections, attenuation coefficients, and energy absorption coefficients from 10eV and 100GeV,” NSRDS-NBS 29 (National Bureau of Standards, Washington, D.C., 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Dual-energy x-ray linear detector array: (a) sandwiched configuration and (b) castellated configuration.

Fig. 2
Fig. 2

Schematic illustration of the binocular stereo x-ray imaging technique.

Fig. 3
Fig. 3

Experimental setup for the WTF investigation: (a) WTF base, (b) experimental condition, (c) two lines of castellated arrays with an offset of one scintillator pitch between them.

Fig. 4
Fig. 4

Formation of a line-scan format dual-energy x-ray image by (a) a sandwiched linear detector array and (b) a castellated linear detector array.

Fig. 5
Fig. 5

Example of a (zoom-in) gray-level image of a set of keys to illustrate the interlacing effect: (a) original image and (b) deinterlaced image.

Fig. 6
Fig. 6

Simulated WTF for Sandx2, sandwiched, castellated, and detector configurations.

Fig. 7
Fig. 7

Measured WTF for Sandx2, sandwiched, and castellated detector configurations.

Fig. 8
Fig. 8

Relative difference in WTF among theoretical sandwiched and Sandx2 (S-Sx2_Theory), theoretical sandwiched and castellated (S-C_Theory), experimental sandwiched and Sandx2 (S-Sx2_Exp), and experimental sandwiched and castellated (S-C_Exp) detector configurations.

Fig. 9
Fig. 9

Examples of practical luggage images produced by a commercialized castellated linear detector array.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

WTFf, E=MRoutf, EMRinf, E,
MRinf, E=Iinmax-IinminIinmax+Iinmin,
MRoutf, E=Ioutmax-IoutminIoutmax+Ioutmin.
ITXIin exp-μZ, ρ; Ex,
MRinf, E=1-exp-μx1+exp-μx.
WTF¯f, E=1Nn=0NWTFf, E; nΔs,
ηdE1-ITXEexp-μdExdE,
RsE; y=1/Ts0Ts IsyηdEdy.
WTFsysSand-WTFsysCastWTFsysSand =WTF1Sand-WTF1CastWTF2××WTFnWTF1SandWTF2××WTFn =WTF1Sand-WTF1CastWTF1Sand.
WTFsysSandExp-WTFsysCastExpWTFsysSandExpWTFSandTheory-WTFCastTheoryWTFSandTheory,

Metrics