Abstract

A liquid-crystal (LC) lens driven by two voltages is reported. The lens has a focal length that is electrically tunable. The range of the variable focusing power is very wide, covering approximately 0.8–10.7 D. In the entire focal range the LC lens maintains high optical quality. The LC lens can be driven in a simple way to prevent the occurrence of a disclination line. The use of the LC lens in image formation is demonstrated.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]
  2. S. T. Kowel, D. S. Cleverly, P. G. Kornreich, “Focusing by electrical modulation of refraction in a liquid crystal cell,” Appl. Opt. 23, 278–289 (1984).
    [CrossRef] [PubMed]
  3. T. Nose, S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
    [CrossRef]
  4. T. Nose, S. Masuda, S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
    [CrossRef]
  5. N. A. Riza, M. C. DeJule, “Three-terminal adaptive nematic liquid-crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
    [CrossRef] [PubMed]
  6. A. F. Naumov, M. Yu. Loktev, I. R. Guralnik, G. Vdovin, “Liquid-crystal adaptive lenses with modal control,” Opt. Lett. 23, 992–994 (1998).
    [CrossRef]
  7. M. Honma, T. Nose, S. Sato, “Enhancement of numerical aperture of liquid crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys. 39, 4799–4802 (2000).
    [CrossRef]
  8. L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
    [CrossRef]
  9. M. Ye, S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
    [CrossRef]
  10. B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
    [CrossRef]
  11. H. Ren, S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
    [CrossRef]
  12. H. Ren, Y. H. Fan, S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
    [CrossRef]
  13. M. Ye, S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
    [CrossRef]
  14. M. Ye, S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42, 6439–6440 (2003).
    [CrossRef]
  15. M. Ye, B. Wang, S. Sato, “Double-layer liquid crystal lens,” Jpn. J. Appl. Phys. 43, L352–L354 (2004).
    [CrossRef]
  16. B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
    [CrossRef] [PubMed]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), p. 77.
  18. B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
    [CrossRef]
  19. M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
    [CrossRef]

2004 (2)

2003 (5)

H. Ren, S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

H. Ren, Y. H. Fan, S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42, 6439–6440 (2003).
[CrossRef]

M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

2002 (3)

B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
[CrossRef]

M. Ye, S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

2000 (2)

M. Honma, T. Nose, S. Sato, “Enhancement of numerical aperture of liquid crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys. 39, 4799–4802 (2000).
[CrossRef]

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

1998 (1)

1994 (1)

1991 (1)

T. Nose, S. Masuda, S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

1989 (1)

T. Nose, S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

1984 (1)

1979 (1)

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Cleverly, D. S.

Commander, L. G.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Day, S. E.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

DeJule, M. C.

Fan, Y. H.

H. Ren, Y. H. Fan, S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), p. 77.

Guralnik, I. R.

Honma, M.

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

M. Honma, T. Nose, S. Sato, “Enhancement of numerical aperture of liquid crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys. 39, 4799–4802 (2000).
[CrossRef]

Kornreich, P. G.

Kowel, S. T.

Loktev, M. Yu.

Masuda, S.

T. Nose, S. Masuda, S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

Naumov, A. F.

Nose, T.

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

M. Honma, T. Nose, S. Sato, “Enhancement of numerical aperture of liquid crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys. 39, 4799–4802 (2000).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

T. Nose, S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Ren, H.

H. Ren, Y. H. Fan, S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

H. Ren, S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

Riza, N. A.

Sato, S.

M. Ye, B. Wang, S. Sato, “Double-layer liquid crystal lens,” Jpn. J. Appl. Phys. 43, L352–L354 (2004).
[CrossRef]

B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42, 6439–6440 (2003).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

M. Ye, S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
[CrossRef]

M. Honma, T. Nose, S. Sato, “Enhancement of numerical aperture of liquid crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys. 39, 4799–4802 (2000).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

T. Nose, S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Selviah, D. R.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Vdovin, G.

Wang, B.

M. Ye, B. Wang, S. Sato, “Double-layer liquid crystal lens,” Jpn. J. Appl. Phys. 43, L352–L354 (2004).
[CrossRef]

B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

Wu, S. T.

H. Ren, Y. H. Fan, S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

H. Ren, S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

Yamaguchi, R.

B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
[CrossRef]

Ye, M.

B. Wang, M. Ye, S. Sato, “Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers,” Appl. Opt. 43, 3420–3425 (2004).
[CrossRef] [PubMed]

M. Ye, B. Wang, S. Sato, “Double-layer liquid crystal lens,” Jpn. J. Appl. Phys. 43, L352–L354 (2004).
[CrossRef]

M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42, 6439–6440 (2003).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

M. Ye, S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

H. Ren, S. T. Wu, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett. 82, 22–24 (2003).
[CrossRef]

H. Ren, Y. H. Fan, S. T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83, 1515–1517 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (9)

M. Ye, S. Sato, “Liquid crystal lens with insulator layers for focusing light waves of arbitrary polarizations,” Jpn. J. Appl. Phys. 42, 6439–6440 (2003).
[CrossRef]

M. Ye, B. Wang, S. Sato, “Double-layer liquid crystal lens,” Jpn. J. Appl. Phys. 43, L352–L354 (2004).
[CrossRef]

B. Wang, R. Yamaguchi, M. Ye, S. Sato, “Novel method for pretilt angle measurement using a liquid crystal lens cell with hybrid alignment,” Jpn. J. Appl. Phys. 41, 5307–5310 (2002).
[CrossRef]

M. Ye, B. Wang, S. Sato, “Driving of a liquid crystal lens without disclination occurring by applying an in-plane electric field,” Jpn. J. Appl. Phys. 42, 5086–5089 (2003).
[CrossRef]

T. Nose, S. Masuda, S. Sato, “Optical properties of a liquid crystal microlens with a symmetric electrode structure,” Jpn. J. Appl. Phys. 30, L2110–L2112 (1991).
[CrossRef]

M. Honma, T. Nose, S. Sato, “Enhancement of numerical aperture of liquid crystal microlenses using a stacked electrode structure,” Jpn. J. Appl. Phys. 39, 4799–4802 (2000).
[CrossRef]

M. Ye, S. Sato, “Optical properties of a liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571–L573 (2002).
[CrossRef]

B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, “Liquid crystal lens with a spherical electrode,” Jpn. J. Appl. Phys. 41, L1232–L1233 (2002).
[CrossRef]

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Liq. Cryst. (1)

T. Nose, S. Sato, “A liquid crystal microlens obtained with a non-uniform electric field,” Liq. Cryst. 5, 1425–1433 (1989).
[CrossRef]

Opt. Commun. (2)

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

M. Ye, S. Sato, “Liquid crystal lens with focus movable along and off axis,” Opt. Commun. 225, 277–280 (2003).
[CrossRef]

Opt. Lett. (2)

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, San Francisco, 1968), p. 77.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure of the LC cell.

Fig. 2
Fig. 2

Calculated equipotential lines at V o = 70 V and V c = 10 V.

Fig. 3
Fig. 3

Calculated equipotential lines in the LC layer at V o = 70 V-V c = 10 V and V o = 70 V-V c = 20 V.

Fig. 4
Fig. 4

Setup for the interference experiment.

Fig. 5
Fig. 5

Interference patterns at various values of V c .

Fig. 6
Fig. 6

Distributions of the phase retardation at various values of V c .

Fig. 7
Fig. 7

Focal length f at various values of V c .

Fig. 8
Fig. 8

(a) Schematic of the electrically controlled size change of the image formed by the LC lens. (b) Images formed by the LC lens at various values of V c .

Fig. 9
Fig. 9

(a) Opposite rotation of the LC directors and the disclination line in the interference pattern. (b) Uniform rotation of the LC directors produces a perfect interference pattern.

Metrics