Abstract

Near-resonant holographic interferometry is demonstrated to measure temperature and species concentration in a two-dimensional steady premixed air–acetylene flame. A peak temperature of (2600 ± 100) K and a peak OH number density of (9.6 ± 0.3) × 1022 m-3 are obtained, consistent with the expected values for such a flame. These values are determined by recording interferograms with a laser assumed sufficiently detuned from line center so that pressure and temperature broadening can be ignored. The results are thus obtained without making prior assumptions on the temperature or pressure of the flame beyond the existence of thermal equilibrium.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Craig, M. Azzazy, “Resonant holographic detection of hydroxyl radicals in reacting flows,” AIAA J. 24, 74–81 (1986).
    [CrossRef]
  2. A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
    [CrossRef]
  3. T. J. McIntyre, A. I. Bishop, T. N. Eichmann, H. Rubinsztein-Dunlop, “Enhanced flow visualization using near-resonant holographic interferometry,” Appl. Opt. 42, 4445–4451 (2003).
    [CrossRef] [PubMed]
  4. A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
    [CrossRef]
  5. J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
    [CrossRef]
  6. A. I. Bishop, T. J. McIntyre, B. N. Littleton, H. Rubinsztein-Dunlop, “Near-resonant holographic interferometry and absorption measurements of seeded atomic species in a flame,” Appl. Opt. 43, 3391–3400 (2004).
    [CrossRef] [PubMed]
  7. A. P. Thorne, U. Litzen, S. Johansson, “Spectrophysics: principles and applications,” (Springer-Verlag, Berlin, 1999).
  8. W. C. Marlow, “Hakenmethode,” Appl. Opt. 6, 1715–1724 (1967).
    [CrossRef] [PubMed]
  9. G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).
  10. C. Th. J. Alkemade, Metal Vapours in Flames (Pergamon, London, 1982).
  11. R. C. M. Learner, “The influence of vibration-rotation interaction on intensities in the electronic spectra of diatomic molecules: I. The hydroxyl radical,” Proc. R. Soc. London A 269, 311–326 (1962).
    [CrossRef]
  12. A. I. Bishop, “Spectrally selective holographic interferometry techniques for flow diagnostics,” Ph.D. dissertation (The University of Queensland, Brisbane, Australia, 2001).
  13. G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
    [CrossRef]
  14. P. E. Rouse, R. Engleman, “Oscillator strengths from line absorption in a high temperature furnace I. The (0,0) and (1,0) bands of the A2∑+—X2Πi transitions in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1502–1521 (1973).
    [CrossRef]
  15. R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
    [CrossRef]

2004 (2)

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

A. I. Bishop, T. J. McIntyre, B. N. Littleton, H. Rubinsztein-Dunlop, “Near-resonant holographic interferometry and absorption measurements of seeded atomic species in a flame,” Appl. Opt. 43, 3391–3400 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

1997 (1)

1994 (1)

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

1986 (1)

J. E. Craig, M. Azzazy, “Resonant holographic detection of hydroxyl radicals in reacting flows,” AIAA J. 24, 74–81 (1986).
[CrossRef]

1973 (1)

P. E. Rouse, R. Engleman, “Oscillator strengths from line absorption in a high temperature furnace I. The (0,0) and (1,0) bands of the A2∑+—X2Πi transitions in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1502–1521 (1973).
[CrossRef]

1967 (1)

1962 (2)

R. C. M. Learner, “The influence of vibration-rotation interaction on intensities in the electronic spectra of diatomic molecules: I. The hydroxyl radical,” Proc. R. Soc. London A 269, 311–326 (1962).
[CrossRef]

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Alkemade, C. Th. J.

C. Th. J. Alkemade, Metal Vapours in Flames (Pergamon, London, 1982).

Azzazy, M.

J. E. Craig, M. Azzazy, “Resonant holographic detection of hydroxyl radicals in reacting flows,” AIAA J. 24, 74–81 (1986).
[CrossRef]

Beaud, P.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
[CrossRef]

Bishop, A. I.

Boulouchos, K.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

Brock, N.

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

Brown, M. S.

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

Ching, C. H.

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

Craig, J. E.

J. E. Craig, M. Azzazy, “Resonant holographic detection of hydroxyl radicals in reacting flows,” AIAA J. 24, 74–81 (1986).
[CrossRef]

Crosswhite, H. M.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

de Barber, P. A.

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

Dieke, G. H.

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

Doll, G. L.

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

Dunn-Rankin, D.

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

Eichmann, T. N.

Engleman, R.

P. E. Rouse, R. Engleman, “Oscillator strengths from line absorption in a high temperature furnace I. The (0,0) and (1,0) bands of the A2∑+—X2Πi transitions in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1502–1521 (1973).
[CrossRef]

Frey, H.-M.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
[CrossRef]

Gerber, T.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
[CrossRef]

Gilgenbach, R. M.

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

Johansson, S.

A. P. Thorne, U. Litzen, S. Johansson, “Spectrophysics: principles and applications,” (Springer-Verlag, Berlin, 1999).

Lash, J. S.

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

Learner, R. C. M.

R. C. M. Learner, “The influence of vibration-rotation interaction on intensities in the electronic spectra of diatomic molecules: I. The hydroxyl radical,” Proc. R. Soc. London A 269, 311–326 (1962).
[CrossRef]

Lee, J. C.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

Lindley, R. A.

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

Littleton, B. N.

Litzen, U.

A. P. Thorne, U. Litzen, S. Johansson, “Spectrophysics: principles and applications,” (Springer-Verlag, Berlin, 1999).

Marlow, W. C.

McIntyre, T. J.

Mischler, B.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
[CrossRef]

Posner, J. D.

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

Radi, P.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
[CrossRef]

Rouse, P. E.

P. E. Rouse, R. Engleman, “Oscillator strengths from line absorption in a high temperature furnace I. The (0,0) and (1,0) bands of the A2∑+—X2Πi transitions in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1502–1521 (1973).
[CrossRef]

Rubinsztein-Dunlop, H.

Thorne, A. P.

A. P. Thorne, U. Litzen, S. Johansson, “Spectrophysics: principles and applications,” (Springer-Verlag, Berlin, 1999).

Tzannis, A.-P.

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

A.-P. Tzannis, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, “Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a two-dimensional diffusion flame,” Appl. Opt. 36, 7978–7983 (1997).
[CrossRef]

AIAA J. (1)

J. E. Craig, M. Azzazy, “Resonant holographic detection of hydroxyl radicals in reacting flows,” AIAA J. 24, 74–81 (1986).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

J. D. Posner, D. Dunn-Rankin, M. S. Brown, N. Brock, P. A. de Barber, “Resonant holographic interferometry for species concentration measurements with saturated anomalous dispersion,” Appl. Phys. B 78, 661–672 (2004).
[CrossRef]

Flow Turb. Combust. (1)

A.-P. Tzannis, J. C. Lee, P. Beaud, H.-M. Frey, T. Gerber, B. Mischler, P. Radi, K. Boulouchos, “OH concentration measurements by resonant holographic interferometry and comparison with direct numerical simulations,” Flow Turb. Combust. 64, 183–196 (2000).
[CrossRef]

J. Appl. Phys. (1)

R. A. Lindley, R. M. Gilgenbach, C. H. Ching, J. S. Lash, G. L. Doll, “Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments,” J. Appl. Phys. 76, 5457–5472 (1994).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

G. H. Dieke, H. M. Crosswhite, “The ultraviolet bands of OH fundamental data,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962).
[CrossRef]

P. E. Rouse, R. Engleman, “Oscillator strengths from line absorption in a high temperature furnace I. The (0,0) and (1,0) bands of the A2∑+—X2Πi transitions in OH and OD,” J. Quant. Spectrosc. Radiat. Transfer 13, 1502–1521 (1973).
[CrossRef]

Proc. R. Soc. London A (1)

R. C. M. Learner, “The influence of vibration-rotation interaction on intensities in the electronic spectra of diatomic molecules: I. The hydroxyl radical,” Proc. R. Soc. London A 269, 311–326 (1962).
[CrossRef]

Other (4)

A. I. Bishop, “Spectrally selective holographic interferometry techniques for flow diagnostics,” Ph.D. dissertation (The University of Queensland, Brisbane, Australia, 2001).

G. Herzberg, Molecular Spectra and Molecular Structure. I Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

C. Th. J. Alkemade, Metal Vapours in Flames (Pergamon, London, 1982).

A. P. Thorne, U. Litzen, S. Johansson, “Spectrophysics: principles and applications,” (Springer-Verlag, Berlin, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison between the Sellmeier refractivity and the full theoretical model for air–acetylene flame conditions.

Fig. 2
Fig. 2

Schematic of the interferometer used to record near-resonant holographic interferograms of the naturally occurring OH in an air–acetylene flame.

Fig. 3
Fig. 3

High-resolution excitation scan of OH for wavelengths in the region of the transitions of interest.

Fig. 4
Fig. 4

Series of near-resonant holographic interferograms: (a) R 2(4), -3.0-pm detuning; (b) R 2(4), -0.5-pm detuning; (c) R 2(4), +1.0-pm detuning; (d) R 2(4), +2.0-pm detuning; (e) R 2(4), +4.0-pm detuning; (f) R 2(15), +2.0-pm detuning.

Fig. 5
Fig. 5

Recovered phase (in radians) from the interferograms: (a) R 2(4), +4.0-pm detuning; (b) R 2(4), +2.0-pm detuning; (c) R 2(15), +2.0-pm detuning.

Fig. 6
Fig. 6

(a) OH number density for the K = 4 level of the 2Π3/2 v″ = 0 state in OH; (b) calculated temperature of the flame.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n-1= e2NvJf16π20meν01ν0-ν.
n-1= e2NvJf16π2c20meλ01λ0- 1λ.
ϕ=2π nlλ.
NvJ= 8π0c2mee2fl1λ0- 1λΔϕ,
NvJN= 2J+1exp-EvJ/kT22J+1exp-EvsJ/kT,
T= Ej-EiklnNi2Jj+1Nj2Ji+1-1,

Metrics