Abstract

We propose the use of a truncated ball lens in a collimating system to transform a spherical wave from a highly divergent source into a plane wave. The proposed scheme, which incorporates a hyperbolic lens, is discussed, and the overall system is found to have a large acceptance angle and to be free of spherical aberration. Diffraction and polarization effects are neglected, as well as skew rays.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens

Zbigniew Jaroszewicz and Javier Morales
J. Opt. Soc. Am. A 15(9) 2383-2390 (1998)

Refraction limit of miniaturized optical systems: a ball-lens example

Myun-Sik Kim, Toralf Scharf, Stefan Mühlig, Martin Fruhnert, Carsten Rockstuhl, Roland Bitterli, Wilfried Noell, Reinhard Voelkel, and Hans Peter Herzig
Opt. Express 24(7) 6996-7005 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription