Abstract

A 760-nm light source of >10 mW is obtained from a frequency-doubled external-cavity diode laser by use of using an erbium-doped fiber amplifier and a periodically poled lithium niobate waveguide. The 5S 1/2 → 7S 1/2 two-photon transitions of rubidium are observed with such a light source. This laser frequency is locked to the Rb two-photon transitions with an instability of 10 kHz (1 s). Our experimental scheme provides a compact, high-performance frequency, standard in the S band (1480–1530 nm) for fiber-optic communication and sensing applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ducos, J. Honthaas, O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” Eur. Phys. J. Appl. Phys. 20, 227–231 (2002).
    [CrossRef]
  2. W. C. Swann, S. L. Gilbert, “Pressure-induced shift and broadening of 1560–1630-nm carbon monoxide wavelength-calibration lines,” J. Opt. Soc. Am. B 19, 2461–2467 (2002).
    [CrossRef]
  3. A. Danielli, P. Rusian, A. Arie, M. H. Chou, M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2 → 5D5/2 two-photon transitions of rubidium,” Opt. Lett. 25, 905–907 (2000).
    [CrossRef]
  4. Committee International des Poids et Mésures, “Committee International des Poids et Méasures,” Report of the 86th Meeting (Bureau International des Poids et Mésures, Paris, 1997).
  5. M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
    [CrossRef]
  6. D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
    [CrossRef]
  7. G. Grynberg, B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791–841 (1977).
    [CrossRef]
  8. M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
    [CrossRef]
  9. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002)
    [CrossRef]

2002 (4)

F. Ducos, J. Honthaas, O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” Eur. Phys. J. Appl. Phys. 20, 227–231 (2002).
[CrossRef]

W. C. Swann, S. L. Gilbert, “Pressure-induced shift and broadening of 1560–1630-nm carbon monoxide wavelength-calibration lines,” J. Opt. Soc. Am. B 19, 2461–2467 (2002).
[CrossRef]

M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
[CrossRef]

K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett. 27, 179–181 (2002)
[CrossRef]

2000 (1)

1997 (1)

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

1996 (1)

M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

1977 (1)

G. Grynberg, B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791–841 (1977).
[CrossRef]

Acef, O.

F. Ducos, J. Honthaas, O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” Eur. Phys. J. Appl. Phys. 20, 227–231 (2002).
[CrossRef]

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Arie, A.

Bell, A. S.

M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Biraden, F.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Cagnac, B.

G. Grynberg, B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791–841 (1977).
[CrossRef]

Chou, M. H.

Clairon, A.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Danielli, A.

de Beauvoir, B.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Ducos, F.

F. Ducos, J. Honthaas, O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” Eur. Phys. J. Appl. Phys. 20, 227–231 (2002).
[CrossRef]

Fejer, M. M.

Felder, R.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Ferguson, A. I.

M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Fujimura, M.

Gilbert, S. L.

Grynberg, G.

G. Grynberg, B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791–841 (1977).
[CrossRef]

Hilico, L.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Honthaas, J.

F. Ducos, J. Honthaas, O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” Eur. Phys. J. Appl. Phys. 20, 227–231 (2002).
[CrossRef]

Kurz, J. R.

Latrassea, C.

M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
[CrossRef]

Nez, F.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Parameswaran, K. R.

Poulina, M.

M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
[CrossRef]

Riis, E.

M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Roussev, R. V.

Route, R. K.

Rusian, P.

Snadden, M. J.

M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Swann, W. C.

Têtu, M.

M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
[CrossRef]

Touahri, D.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Touahria, D.

M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
[CrossRef]

Zondy, J.-J.

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

F. Ducos, J. Honthaas, O. Acef, “Development of an optical frequency comb around 1556 nm referenced to an Rb frequency standard at 778 nm,” Eur. Phys. J. Appl. Phys. 20, 227–231 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (3)

M. Poulina, C. Latrassea, D. Touahria, M. Têtu, “Frequency stability of an optical frequency standard at 192.6 THz based on a two-photon transition of rubidium atoms,” Opt. Commun. 207, 233–242 (2002).
[CrossRef]

D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. de Beauvoir, F. Biraden, F. Nez, “Frequency measurement of the 5S1/2(F = 3)–5D5/2(F = 5) two-photon transition in rubidium,” Opt. Commun. 133, 471–478 (1997).
[CrossRef]

M. J. Snadden, A. S. Bell, E. Riis, A. I. Ferguson, Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70–76 (1996).
[CrossRef]

Opt. Lett. (2)

Rep. Prog. Phys. (1)

G. Grynberg, B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791–841 (1977).
[CrossRef]

Other (1)

Committee International des Poids et Mésures, “Committee International des Poids et Méasures,” Report of the 86th Meeting (Bureau International des Poids et Mésures, Paris, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for Rb 5S 1/2-7S 1/2 two-photon spectroscopy: REF, reference signal; QPM, quasi-phase-matched; other abbreviations defined in text.

Fig. 2
Fig. 2

Spectrum with the two transitions Rb (87) F = 2–2 and Rb (85) (F = 3–3). Its linewidth is 2.6 MHz at 760.1 nm.

Fig. 3
Fig. 3

Derivativelike line shape from the frequency-modulation technique. The signal-to-noise ratio is 30. A laser frequency is locked to the Rb 5S 1/2 → 7S 1/2 transition. The derivativelike line shape from the frequency-modulation technique and the following noise show the laser frequency locked.

Fig. 4
Fig. 4

Square root of the Allan variance as a function of measurement time.

Metrics