Abstract

Congruently grown lithium tantalate crystals containing ferroelectric domain structures have been illuminated with ultraviolet light along the crystallographic c axis with simultaneous application of an external electric field. This gives rise to a star-shaped light diffraction pattern in the transmitted beam. The characteristics of this phenomenon are investigated and compared with those observed in lithium niobate crystals.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  2. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
    [CrossRef] [PubMed]
  3. M. Yamada, “Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,” Rev. Sci. Instrum. 71, 4010–4016 (2000).
    [CrossRef]
  4. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
    [CrossRef]
  5. M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
    [CrossRef]
  6. V. Goplan, M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
    [CrossRef]
  7. M. Müller, E. Soergel, K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28, 2515–2517 (2003).
    [CrossRef] [PubMed]

2004 (1)

M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
[CrossRef]

2003 (1)

2002 (1)

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

2000 (2)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

M. Yamada, “Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,” Rev. Sci. Instrum. 71, 4010–4016 (2000).
[CrossRef]

1996 (1)

V. Goplan, M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Broderick, N. G. R.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Buse, K.

M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
[CrossRef]

M. Müller, E. Soergel, K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28, 2515–2517 (2003).
[CrossRef] [PubMed]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Cho, Y.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Fujimoto, K.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Goplan, V.

V. Goplan, M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

Gupta, M. C.

V. Goplan, M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Hiranaga, Y.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kitamura, K.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Müller, M.

M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
[CrossRef]

M. Müller, E. Soergel, K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28, 2515–2517 (2003).
[CrossRef] [PubMed]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Onoe, A.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Soergel, E.

M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
[CrossRef]

M. Müller, E. Soergel, K. Buse, “Visualization of ferroelectric domains with coherent light,” Opt. Lett. 28, 2515–2517 (2003).
[CrossRef] [PubMed]

Terabe, K.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Wagatsuma, Y.

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

Wengler, M. C.

M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
[CrossRef]

Yamada, M.

M. Yamada, “Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,” Rev. Sci. Instrum. 71, 4010–4016 (2000).
[CrossRef]

Appl. Phys. B (1)

M. Müller, E. Soergel, M. C. Wengler, K. Buse, “Light deflection from ferroelectric domain boundaries,” Appl. Phys. B 78, 367–370 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, K. Kitamura, “Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy,” Appl. Phys. Lett. 81, 4401–4403 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

V. Goplan, M. C. Gupta, “Origin of internal field and visualization of 180° domains in congruent LiTaO3 crystals,” J. Appl. Phys. 80, 6099–6106 (1996).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Yamada, “Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices,” Rev. Sci. Instrum. 71, 4010–4016 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic depiction of the setup used to investigate light patterns behind ferroelectric crystals for different applied high voltages (HV): α, deflection angle; A, current meter.

Fig. 2
Fig. 2

Far-field light patterns observed on the screen for illumination with light of 351.1-nm wavelength for various fields applied to the crystal. The applied fields [kV/mm] are (a) 19.1, (b) 19.8, (c) 20.0, (d) 20.4, (e) 20.8, (f) 21.6. In all these pictures the main beam is blocked. The deflection angle of the ring in (b) is 6.7°. All pictures have the same scale.

Fig. 3
Fig. 3

Typical domain pattern of a partially poled crystal made visible by etching in hydrofluoric acid. The triangular shape of the domains is obvious.

Fig. 4
Fig. 4

Far-field light patterns generated by a frozen domain pattern for several applied electric fields with light of the wavelength λ = 333 nm. The respective electric fields [kV/mm] are (a) -14, (b) -12, (c) -10, (d) -8, (e) -6, (f) -4, (g) -2, (h) 0, (i) +2, (j) +4, (k) +6, (l) +8.

Fig. 5
Fig. 5

Deflection angle of the main maximum αmax versus the wavelength of the diffracted light (E ext = -14 kV/mm).

Fig. 6
Fig. 6

(A), (B) Far-field light patterns generated by applied electric fields E ext = -14 kV/mm and E ext = +10 kV/mm, respectively, for different average domain sizes. Rows show a sample where (1) 8%, (2) 34%, (3) 53%, and (4) 67% of the total poling current has flowed. (C) Near-field visualization of a part of the corresponding domain pattern.

Fig. 7
Fig. 7

Schematics of the generation of three- and six-ray star patterns at small domain sizes for negative (left) and positive (right) signs of the applied voltage, respectively. Shown are (a) the refractive-index distributions for (b) the respective cross sections and (c) top-down views of the crystal.

Metrics