Abstract

Polarization dependent loss (PDL) can cause deterioration in optical network performance owing to the resultant fluctuation in received power because of random changes in fiber polarization. We describe the use of a magnetostrictive layer integrated on a planar light-wave circuit that can offer the functionality of modifying the variable PDL or differential group delay produced within the typical tolerances of volume manufacturing. This approach provides an alternative to the sizable delay lines and splitters that were previously employed for polarization compensation. We demonstrate adjustment of polarization-dependent parameters by the application of an external magnetic field to a ferromagnetic layer adjacent to the waveguide.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
    [CrossRef]
  2. H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
    [CrossRef]
  3. S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
    [CrossRef]
  4. M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
    [CrossRef]
  5. P. S. Chan, H. K. Tsang, “A study of magnetostriction and its applications to silicon-on-insulator waveguides,” in Proceedings of the International Conference Solid State Devices and Materials, 2003 (Japan Society of Applied Physics, Osaka, Japan, 2003), pp. 566–567.
  6. P. S. Chan, H. K. Tsang, “Magnetostrictive polarization compensation on SOI rib waveguide,” in Proceedings of the 8th Opto-Electronics and Communications Conference (Acta Optica Sinica, Shanghai, China, 2003), pp. 219–220.
  7. T. Bestwick, “ASOCTM—a silicon-based integrated optical manufacturing technology,” in Proceedings of the IEEE 48th Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), p. 566.
  8. P. S. Chan, H. K. Tsang, C. Shu, “Mode conversion and birefringence adjustment via focused ion beam etching for slanted rib waveguide walls,” Opt. Lett. 28, 2109–2111 (2003).
    [CrossRef] [PubMed]
  9. R. A. McCurrie, Ferromagnetic Materials: Structure and Properties (Academic, London, 1994).
  10. K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).
  11. E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), Chap. 8.
  12. H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
    [CrossRef]
  13. S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
    [CrossRef]
  14. H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
    [CrossRef]
  15. E. Lea, B. L. Weiss, “Modelling and characteristics of photoelastic waveguides in Si1-x Gex/Si heterostructures,” IEE Proc. Optoelectron. 147, 123–131 (2000).
    [CrossRef]
  16. K. Saitoh, M. Koshiba, Y. Tsuji, “Numerical analysis of integrated acoustooptic tunable filters with weighted coupling,” J. Lightwave Technol. 17, 249–254 (1999).
    [CrossRef]

2003 (2)

P. S. Chan, H. K. Tsang, C. Shu, “Mode conversion and birefringence adjustment via focused ion beam etching for slanted rib waveguide walls,” Opt. Lett. 28, 2109–2111 (2003).
[CrossRef] [PubMed]

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

2001 (1)

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

2000 (1)

E. Lea, B. L. Weiss, “Modelling and characteristics of photoelastic waveguides in Si1-x Gex/Si heterostructures,” IEE Proc. Optoelectron. 147, 123–131 (2000).
[CrossRef]

1999 (1)

1998 (1)

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

1997 (1)

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

1994 (1)

M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
[CrossRef]

1993 (1)

H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

1992 (1)

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

Abe, M.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

Bell, A. J.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Bestwick, T.

T. Bestwick, “ASOCTM—a silicon-based integrated optical manufacturing technology,” in Proceedings of the IEEE 48th Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), p. 566.

Bricheno, T.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Chan, P. S.

P. S. Chan, H. K. Tsang, C. Shu, “Mode conversion and birefringence adjustment via focused ion beam etching for slanted rib waveguide walls,” Opt. Lett. 28, 2109–2111 (2003).
[CrossRef] [PubMed]

P. S. Chan, H. K. Tsang, “Magnetostrictive polarization compensation on SOI rib waveguide,” in Proceedings of the 8th Opto-Electronics and Communications Conference (Acta Optica Sinica, Shanghai, China, 2003), pp. 219–220.

P. S. Chan, H. K. Tsang, “A study of magnetostriction and its applications to silicon-on-insulator waveguides,” in Proceedings of the International Conference Solid State Devices and Materials, 2003 (Japan Society of Applied Physics, Osaka, Japan, 2003), pp. 566–567.

Cheung, W. Y.

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Chin, K. K.

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

Cureton, C.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Day, S.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Guo, W. S.

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), Chap. 8.

Hibino, Y.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

Himeno, A.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

Ho, H. P.

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

Huang, L.

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Itoh, M.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

Jinguji, K.

M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
[CrossRef]

Kawachi, M.

M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
[CrossRef]

H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

Ke, N.

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Koshiba, M.

Lai, Y. W.

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

Lea, E.

E. Lea, B. L. Weiss, “Modelling and characteristics of photoelastic waveguides in Si1-x Gex/Si heterostructures,” IEE Proc. Optoelectron. 147, 123–131 (2000).
[CrossRef]

Liang, H.

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

Liu, X. H.

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

McCurrie, R. A.

R. A. McCurrie, Ferromagnetic Materials: Structure and Properties (Academic, London, 1994).

Moule, D.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Ohmori, Y.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

Ojha, S. M.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

Okuno, M.

M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
[CrossRef]

Pan, Y.

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

Peng, H. J.

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

Qin, G.

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

Saitoh, K.

Sajan, M. R.

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Shu, C.

Sugita, A.

M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
[CrossRef]

Takahashi, H.

H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

Tanaka, T.

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

Taylor, J.

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

Tsang, H. K.

P. S. Chan, H. K. Tsang, C. Shu, “Mode conversion and birefringence adjustment via focused ion beam etching for slanted rib waveguide walls,” Opt. Lett. 28, 2109–2111 (2003).
[CrossRef] [PubMed]

P. S. Chan, H. K. Tsang, “Magnetostrictive polarization compensation on SOI rib waveguide,” in Proceedings of the 8th Opto-Electronics and Communications Conference (Acta Optica Sinica, Shanghai, China, 2003), pp. 219–220.

P. S. Chan, H. K. Tsang, “A study of magnetostriction and its applications to silicon-on-insulator waveguides,” in Proceedings of the International Conference Solid State Devices and Materials, 2003 (Japan Society of Applied Physics, Osaka, Japan, 2003), pp. 566–567.

Tsuji, Y.

Weiss, B. L.

E. Lea, B. L. Weiss, “Modelling and characteristics of photoelastic waveguides in Si1-x Gex/Si heterostructures,” IEE Proc. Optoelectron. 147, 123–131 (2000).
[CrossRef]

Wong, S. P.

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Zhao, S.

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

Electron. Lett. (2)

S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, J. Taylor, “Simple method of fabricating polarisation-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78–79 (1998).
[CrossRef]

M. Abe, Y. Hibino, T. Tanaka, M. Itoh, A. Himeno, Y. Ohmori, “Mach-Zehnder interferometer and arrayed-waveguide-grating integrated multi/demultiplexer with photosensitive wavelength tuning,” Electron. Lett. 37, 376–377 (2001).
[CrossRef]

IEE Proc. Optoelectron. (1)

E. Lea, B. L. Weiss, “Modelling and characteristics of photoelastic waveguides in Si1-x Gex/Si heterostructures,” IEE Proc. Optoelectron. 147, 123–131 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993).
[CrossRef]

J. Appl. Phys. (1)

H. Liang, Y. Pan, S. Zhao, G. Qin, K. K. Chin, “Two-dimensional state of stress in a silicon wafer,” J. Appl. Phys. 71, 2863–2870 (1992).
[CrossRef]

J. Lightwave Technol. (2)

M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994).
[CrossRef]

K. Saitoh, M. Koshiba, Y. Tsuji, “Numerical analysis of integrated acoustooptic tunable filters with weighted coupling,” J. Lightwave Technol. 17, 249–254 (1999).
[CrossRef]

Mater. Chem. Phys. (1)

S. P. Wong, W. Y. Cheung, N. Ke, M. R. Sajan, W. S. Guo, L. Huang, S. Zhao, “Infrared photoelasticity study of stress distribution in silicon under thin film structures,” Mater. Chem. Phys. 51, 157–162 (1997).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

H. J. Peng, S. P. Wong, Y. W. Lai, X. H. Liu, H. P. Ho, S. Zhao, “Simplified system based on photoelastic modulation technique for low-level birefringence measurement,” Rev. Sci. Instrum. 74, 4745–4749 (2003).
[CrossRef]

Other (6)

R. A. McCurrie, Ferromagnetic Materials: Structure and Properties (Academic, London, 1994).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, San Diego, Calif., 2000).

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), Chap. 8.

P. S. Chan, H. K. Tsang, “A study of magnetostriction and its applications to silicon-on-insulator waveguides,” in Proceedings of the International Conference Solid State Devices and Materials, 2003 (Japan Society of Applied Physics, Osaka, Japan, 2003), pp. 566–567.

P. S. Chan, H. K. Tsang, “Magnetostrictive polarization compensation on SOI rib waveguide,” in Proceedings of the 8th Opto-Electronics and Communications Conference (Acta Optica Sinica, Shanghai, China, 2003), pp. 219–220.

T. Bestwick, “ASOCTM—a silicon-based integrated optical manufacturing technology,” in Proceedings of the IEEE 48th Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), p. 566.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a SOI rib waveguide with an overlay and (b) Poincaré sphere traced by rotation of the external field in the transverse direction (xz plane) with left, a TiO2 overlay and right, a CoFe overlay.

Fig. 2
Fig. 2

(a) DGD [ps] and PDL [dB] of similar-length SOI rib waveguides covered by various amounts of oxide. (b) Effects of 63.7-kA m-1 transverse magnetization on DGD and on PDL for oxide-, TiO2-, and CoFe-covered rib waveguides. DUT, device under test; B-field, magnetic field.

Fig. 3
Fig. 3

In situ PDL measured for an applied external field with several ferromagnetic overlays. Filled points represent pure metal; open points, metal alloys. Dashed curve, negative magnetostrictive behavior.

Fig. 4
Fig. 4

Magnetic properties of deposited Ni and Ni79Fe21 overlays.

Fig. 5
Fig. 5

Schematic of the low-level birefringence detection system: P, polarizer; A, analyzer, PEMs, photoelastic modulator; RS-232, serial port used; 1F, first-harmonic frequency; PC, personal computer; ρ, orientation of birefringence sample.

Fig. 6
Fig. 6

(a) Transmittance and (b) retardance of a beam transmitted through a 1.7-μm rib waveguide measured photoelastically. Filled circles, measurement without an applied external magnetic field; open squares, measurements with an external magnetic field of 7.96 kA m-1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ=Δll,
Δφ=2πλ0 d|no-ne|
Δφ=2πλ0 Cdσ1-σ2,

Metrics