Abstract

The Geostationary Earth Radiation Budget (GERB) experiment is a broadband satellite radiometer instrument program intended to resolve remaining uncertainties surrounding the effect of cloud radiative feedback on future climate change. By use of a custom-designed diffraction-aberration telescope model, the GERB detector spatial response is recovered by deconvolution applied to the ground calibration point-spread function (PSF) measurements. An ensemble of randomly generated white-noise test scenes, combined with the measured telescope transfer function results in the effect of noise on the deconvolution being significantly reduced. With the recovered detector response as a base, the same model is applied in construction of the predicted in-flight field-of-view response of each GERB pixel to both short- and long-wave Earth radiance. The results of this study can now be used to simulate and investigate the instantaneous sampling errors incurred by GERB. Also, the developed deconvolution method may be highly applicable in enhancing images or PSF data for any telescope system for which a wave-front error measurement is available.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
    [CrossRef] [PubMed]
  2. B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
    [CrossRef]
  3. J. E. Harries, D. Crommelynck, “The Geostationary Earth Radiation Budget experiment on MSG 1 and its potential applications,” Adv. Space Res. 24, 915–919 (1999).
    [CrossRef]
  4. I. J. Sorensen, “Analytical and experimental characterization of a linear-array thermopile scanning radiometer for geo-synchronous Earth Radiation Budget applications,” M.S. thesis (Virginia Polytechnic Institute and State University, Blacksburg, Va., 1998).
  5. G. Butcher, “Technical review: Honeywell thermoelectric infrared sensors,” in GERB document (University of Leicester, University Road, Leicester, 2000).
  6. G. Butcher, “Procedure for blacking at SRON,” MSG-LU-GE-TN-0031 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 1998), http://www.ssd.rl.ac.uk/gerb/ .
  7. M. Ferlet, M. Caldwell, “GERB-2 static in-flight PSF calculation,” MSG-RAL-GE-RP-TN-2010 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 2003), http://www.ssd.rl.ac.uk/gerb/ .
  8. R. Wrigley, “GERB-1 and 2 calibration: point spread function measurement method,” MSG-ICL-GE-RP-0004 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 2000), http://www.ssd.rl.ac.uk/gerb/ .
  9. L. Gonzalez, A. Hermans, S. Dewitte, A. Ipe, G. Sadowski, N. Clerbaux, “Resolution enhancement of GERB data,” MSG-RMIB-GE-TN-0003 issue 1.0, RMIB GERB Internal Document (Royal Meteorological Institute of Belgium, Brussels, 2002), http://gerb.oma.be/gerb/ .
  10. A. R. Weeks, Fundamentals of Electronic Image Processing (SPIE Optical Engineering Press, Bellingham, Wash., 1996).
  11. E. Quertemont, “GERB-2 telescope assembly,” MSG-AMO-GE-RP-2005 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 1999), http://www.ssd.rl.ac.uk/gerb/ .
  12. G. Matthews, “Sensitivity of a geostationary satellite ERB radiometer to scene and detector non-uniformities,” PhD dissertation (Imperial College, Prince Consort Road, London, UK, 2003).
  13. M. C. Roggemann, J. A. Meinhardt, “Image reconstruction by means of wave-front sensor measurements in closed-loop adaptive-optics systems,” J. Opt. Am. A 10, 1996–2007 (1993).
    [CrossRef]

1999 (1)

J. E. Harries, D. Crommelynck, “The Geostationary Earth Radiation Budget experiment on MSG 1 and its potential applications,” Adv. Space Res. 24, 915–919 (1999).
[CrossRef]

1996 (1)

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

1993 (1)

M. C. Roggemann, J. A. Meinhardt, “Image reconstruction by means of wave-front sensor measurements in closed-loop adaptive-optics systems,” J. Opt. Am. A 10, 1996–2007 (1993).
[CrossRef]

1989 (1)

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Barkstrom, B. R.

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

Blanchet, J. P.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Boer, G. J.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Butcher, G.

G. Butcher, “Technical review: Honeywell thermoelectric infrared sensors,” in GERB document (University of Leicester, University Road, Leicester, 2000).

Caldwell, M.

M. Ferlet, M. Caldwell, “GERB-2 static in-flight PSF calculation,” MSG-RAL-GE-RP-TN-2010 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 2003), http://www.ssd.rl.ac.uk/gerb/ .

Cess, R. D.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Cooper, J. E.

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

Crommelynck, D.

J. E. Harries, D. Crommelynck, “The Geostationary Earth Radiation Budget experiment on MSG 1 and its potential applications,” Adv. Space Res. 24, 915–919 (1999).
[CrossRef]

Ferlet, M.

M. Ferlet, M. Caldwell, “GERB-2 static in-flight PSF calculation,” MSG-RAL-GE-RP-TN-2010 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 2003), http://www.ssd.rl.ac.uk/gerb/ .

Ghan, S. J.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Harries, J. E.

J. E. Harries, D. Crommelynck, “The Geostationary Earth Radiation Budget experiment on MSG 1 and its potential applications,” Adv. Space Res. 24, 915–919 (1999).
[CrossRef]

Harrison, E. F.

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

Kiehl, J. T.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Le Treut, H.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Lee, R. B.

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

Li, Z.-X.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Liang, X.-Z.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Matthews, G.

G. Matthews, “Sensitivity of a geostationary satellite ERB radiometer to scene and detector non-uniformities,” PhD dissertation (Imperial College, Prince Consort Road, London, UK, 2003).

Meinhardt, J. A.

M. C. Roggemann, J. A. Meinhardt, “Image reconstruction by means of wave-front sensor measurements in closed-loop adaptive-optics systems,” J. Opt. Am. A 10, 1996–2007 (1993).
[CrossRef]

Mitchell, J. F. B.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Morcrette, J.-J.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Potter, G. L.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Randall, D. A.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Riches, M. R.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Roeckner, E.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Roggemann, M. C.

M. C. Roggemann, J. A. Meinhardt, “Image reconstruction by means of wave-front sensor measurements in closed-loop adaptive-optics systems,” J. Opt. Am. A 10, 1996–2007 (1993).
[CrossRef]

Schlese, U.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Slingo, A.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Smith, G. L.

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

Sorensen, I. J.

I. J. Sorensen, “Analytical and experimental characterization of a linear-array thermopile scanning radiometer for geo-synchronous Earth Radiation Budget applications,” M.S. thesis (Virginia Polytechnic Institute and State University, Blacksburg, Va., 1998).

Taylor, K. E.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Washington, W. M.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Weeks, A. R.

A. R. Weeks, Fundamentals of Electronic Image Processing (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

Wetherald, R. T.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Wielicki, B. A.

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

Yagai, I.

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Adv. Space Res. (1)

J. E. Harries, D. Crommelynck, “The Geostationary Earth Radiation Budget experiment on MSG 1 and its potential applications,” Adv. Space Res. 24, 915–919 (1999).
[CrossRef]

Bull. Amer. Meteor. Soc. (1)

B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, J. E. Cooper, “Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing experiment,” Bull. Amer. Meteor. Soc. 77, 853–868 (1996).
[CrossRef]

J. Opt. Am. A (1)

M. C. Roggemann, J. A. Meinhardt, “Image reconstruction by means of wave-front sensor measurements in closed-loop adaptive-optics systems,” J. Opt. Am. A 10, 1996–2007 (1993).
[CrossRef]

Science (1)

R. D. Cess, G. L. Potter, J. P. Blanchet, G. J. Boer, S. J. Ghan, J. T. Kiehl, H. Le Treut, Z.-X. Li, X.-Z. Liang, J. F. B. Mitchell, J.-J. Morcrette, D. A. Randall, M. R. Riches, E. Roeckner, U. Schlese, A. Slingo, K. E. Taylor, W. M. Washington, R. T. Wetherald, I. Yagai, “Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models,” Science 245, 513–516 (1989).
[CrossRef] [PubMed]

Other (9)

I. J. Sorensen, “Analytical and experimental characterization of a linear-array thermopile scanning radiometer for geo-synchronous Earth Radiation Budget applications,” M.S. thesis (Virginia Polytechnic Institute and State University, Blacksburg, Va., 1998).

G. Butcher, “Technical review: Honeywell thermoelectric infrared sensors,” in GERB document (University of Leicester, University Road, Leicester, 2000).

G. Butcher, “Procedure for blacking at SRON,” MSG-LU-GE-TN-0031 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 1998), http://www.ssd.rl.ac.uk/gerb/ .

M. Ferlet, M. Caldwell, “GERB-2 static in-flight PSF calculation,” MSG-RAL-GE-RP-TN-2010 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 2003), http://www.ssd.rl.ac.uk/gerb/ .

R. Wrigley, “GERB-1 and 2 calibration: point spread function measurement method,” MSG-ICL-GE-RP-0004 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 2000), http://www.ssd.rl.ac.uk/gerb/ .

L. Gonzalez, A. Hermans, S. Dewitte, A. Ipe, G. Sadowski, N. Clerbaux, “Resolution enhancement of GERB data,” MSG-RMIB-GE-TN-0003 issue 1.0, RMIB GERB Internal Document (Royal Meteorological Institute of Belgium, Brussels, 2002), http://gerb.oma.be/gerb/ .

A. R. Weeks, Fundamentals of Electronic Image Processing (SPIE Optical Engineering Press, Bellingham, Wash., 1996).

E. Quertemont, “GERB-2 telescope assembly,” MSG-AMO-GE-RP-2005 issue 1.0, RAL GERB Document Server (Rutherford Appleton Laboratory, Chilton, DIDCOT, OX11 0QX, UK, 1999), http://www.ssd.rl.ac.uk/gerb/ .

G. Matthews, “Sensitivity of a geostationary satellite ERB radiometer to scene and detector non-uniformities,” PhD dissertation (Imperial College, Prince Consort Road, London, UK, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) Drawing and photograph of GERB instrument. (b) GERB operation aboard a spinning MSG platform using DSM and a three-mirror silver-coated aluminum telescope to view Earth scenes, CalMon, and IBB on each rotation. DSM, descan mirror; CalMon, calibration monitor; IBB, internal blackbody.

Fig. 2
Fig. 2

Photograph of five blackened pixels in a spare GERB detector array.

Fig. 3
Fig. 3

Optical train layout of GERB PSF measurement. 1, He–Ne laser; 2a and b, Steering periscope mirrors; 3, Brightness-monitoring silicon photodiode; 4, Beam splitter; 5, Neutral density filters; 6, Objective lens and 5-μm pinhole; 7, Converging lens; 8, Circular baffle; 9, Flat fold mirror; 10, Rotational and translational gimbal-mounted mirror to adjust radiation entrance angle; 11, 12-mm-thick borosilicate crown glass vacuum chamber window.

Fig. 4
Fig. 4

PSF measurement results for pixel 169 in the array of the GERB 1 unit. Data covers response across ±3 PP in both horizontal (θ) and vertical (ϕ) angles.

Fig. 5
Fig. 5

Block diagram of how PSF can be constructed from all contributing effects. The construct starts with the response of the blackened pixel. Stage 1 is the defocus effect arising from the uncertainty in the placement of the detector at the focal plane and the depth of the gold black deposit. Stage 2 is the aberration of the wave front passing through the GERB telescope. Stage 3 is the diffraction effects of radiation at 633-nm radiation passing through the telescope.

Fig. 6
Fig. 6

Three WFE measurements made on the GERB 1 telescope at various vertical angles of entry.

Fig. 7
Fig. 7

(a) Recognizable test scene s(θ, ϕ). (b) Telescope transfer function and recognizable test scene used to predict the amplitude distribution S 169(θ, ϕ) arriving at pixel 169. (c) White-noise test scene s i (θ, ϕ). (d) Telescope transfer function and white-noise test scene used to predict amplitude distribution Si169(θ, ϕ) arriving at pixel 169.

Fig. 8
Fig. 8

(a) Magnitude cross section of average DA pattern arriving at detector 169 after 1 iteration. (b) Magnitude cross section of average DA pattern arriving at detector 169 after 500 iterations.

Fig. 9
Fig. 9

Power magnitude of average DA pattern arriving at detector 169 on GERB 1 during PSF measurement.

Fig. 10
Fig. 10

PSF and deconvolution results for pixel 169 on GERB 1. Left, interpolated PSF result. Middle, example of bare GERB detector. Right, deconvolution result.

Fig. 11
Fig. 11

Distortion kernel convolved with DA pattern to simulate g-force deformation to telescope mirrors (angular extent of plots is again 6 × 6 PP).

Fig. 12
Fig. 12

Amplitude magnitude of DA pattern arriving at detector 128 on GERB 1 due to an 11.5-μm point source on the Earth.

Fig. 13
Fig. 13

Pixel 0, GERB 1: (a) Ground-measured PSF. (b) Static in-flight PSF at 0.633 μm (normalized for application to SEVIRI data). (c) Cross section comparison of static in-flight PSFs at 0.633 and 11.5 μm.

Fig. 14
Fig. 14

Pixel 128, GERB 1: (a) Ground-measured PSF. (b) Static in-flight PSF at 0.633 μm (normalized for application to SEVIRI data). (c) Cross section comparison of static in-flight PSFs at 0.633 and 11.5 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

nptsx=aθmaxPSF-θminPSFλ,
nptsy=aϕmaxPSF-ϕminPSFλ.
Tnx, y=expiπWFEx, y, ϕcn,|x|<a2, and |y|<a2,Tnx, y=0,|x|a2or |y|a2,
Sinθ, ϕ=κin|FTFTsiθ, ϕTnx, y|,
DAθ, ϕ, n=1Ni=1NFT-1FTSinθ, ϕFTsiθ, ϕ.
pnθ, ϕ=FT-1FTPSFnθ, ϕFTDAθ, ϕ, n|DAθ, ϕ, n|.

Metrics