Abstract

An inexpensive technique for realizing a three-dimensional (3D) camera phone display is presented. Light from the liquid-crystal screen of a camera phone is linearly polarized, and its direction of polarization is easily manipulated by a cellophane sheet used as a half-waveplate. The novel 3D camera phone display is made possible solely by optical components without resorting to computation, so that the 3D image is displayed in real time. Quality of the original image is not sacrificed in the process of converting it into a 3D image.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Okoshi, Three-Dimensional Imaging Engineering, 2nd ed. (in Japanese) (Asakura, Tokyo, 1997). [An updated version of the English translation Three-Dimensional Imaging Techniques (Academic, New York, 1976).]
  2. J. A. Norling, “The stereoscopic art-a reprint,” J. SMPTE 60, 286–308 (1953).
    [CrossRef]
  3. A. W. Judge, Stereoscopic Photography: Its Application to Science, Industry and Education (Chapman and Hall, London, 1950).
  4. R. E. Fisher, “Optics for head-mounted displays,” Inf. Displ. 10, 12–18 (1994).
  5. T. Izumi, ed., Fundamentals of 3D Vision (Ohm-sha, Tokyo, 1995).
  6. H. Isono, M. Yasuda, “Flicker-free field sequential stereoscopic TV system and measurement of human depth perception,” J. SMPTE 99, 138–141 (1990).
    [CrossRef]
  7. L. Lipton, “Selection devices for field-sequential stereoscopic displays: a brief history,” in Stereoscopic Displays and Applications II, J. O. Merritt, S. S. Fisher, eds., Proc. SPIE1457, 274–282 (1991).
    [CrossRef]
  8. H. E. Ives, “Parallax panoramagrams for viewing by reflected light,” J. Opt. Soc. Am. 20, 585–592 (1930).
    [CrossRef]
  9. H. E. Ives, “Optical properties of a Lippmann lenticulated sheet,” J. Opt. Soc. Am. 21, 171–176 (1931).
    [CrossRef]
  10. H. E. Ives, “The projection of parallax panoramagrams,” J. Opt. Soc. Am. 21, 397–409 (1931).
    [CrossRef]
  11. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
    [CrossRef]
  12. H. Higuchi, J. Hamasaki, “Real-time transmission of 3-D images formed by parallax panoramagrams,” Appl. Opt. 17, 3895–3902 (1978).
    [CrossRef] [PubMed]
  13. M. G. Lippmann, “Epreuves reversiles donnant la sensation du relief,” J. de Phys. Ser. 4 7, 821–825 (1908).
  14. R. J. Collier, “Holography and integral photography,” Physics Today, July1968, 55–63.
  15. F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.
  16. D. A. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef] [PubMed]
  17. E. N. Leith, J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377–1381 (1963).
    [CrossRef]
  18. T. Okoshi, K. Oshima, “Three-dimensional imaging from a unidirectional hologram: wide-viewing-zone projection type,” Appl. Opt. 15, 1023–1029 (1976).
    [CrossRef] [PubMed]
  19. A. C. Traub, “Stereoscopic display using rapid varifocal mirror oscillations,” Appl. Opt. 6, 1085–1087 (1967).
    [CrossRef] [PubMed]
  20. S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
    [CrossRef]
  21. K. Iizuka, “Cellophane as a half-waveplate and its use for converting a laptop computer screen into a 3D display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
    [CrossRef]
  22. J. Harrold, A. Jacobs, G. J. Woodgate, D. Ezra, “Performance of a convertible, 2D and 3D parallax barrier autostereoscopic display,” in Proceedings of the Society for Information Display Twentieth International Display Research Conference, J. Morreale, ed. (Society of Information Display, San Jose, Calif., 2000), pp. 280–283.
  23. J. Cutting, P. Vishton, “Perceiving layout and knowing distance: the integration, relative potency and contextual use of different information about depth,” in Perception of Space and Motion, W. Epstein, S. Rogers, eds. (Academic, New York, 1995), pp. 69–118.
    [CrossRef]
  24. E. Goldstein, Sensation and Perception, 3rd ed. (Wadsworth, Belmont, Calif.1989).
  25. H. Sedgwick, “The geometry of spatial layout in pictorial representation,” in The Perception of Pictures, Vol. 1, Alberti’s Window: The Projective Model of Pictorial Information, M. Hagen, ed. (Academic, London, 1980), pp. 34–90.
  26. J. D. Pfautz, “Depth perception in computer graphics,” Technical Report 546, (University of Cambridge Computer Laboratory, Cambridge, UK, 2002).
  27. H. Sugiyama, “Route guidance services for pedestrians,” J. Inst. Electron. Commun. Eng. Jpn. 86, 358–363 (2003).
  28. H. Sugiyama, “A pedestrian navigation system based on a navigation demand model,” presented at the Eighth World Congress on Intelligent Transport Systems, Sydney, Australia, 30 September–4 October 2001.

2003 (2)

K. Iizuka, “Cellophane as a half-waveplate and its use for converting a laptop computer screen into a 3D display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
[CrossRef]

H. Sugiyama, “Route guidance services for pedestrians,” J. Inst. Electron. Commun. Eng. Jpn. 86, 358–363 (2003).

1994 (1)

R. E. Fisher, “Optics for head-mounted displays,” Inf. Displ. 10, 12–18 (1994).

1990 (1)

H. Isono, M. Yasuda, “Flicker-free field sequential stereoscopic TV system and measurement of human depth perception,” J. SMPTE 99, 138–141 (1990).
[CrossRef]

1980 (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

1978 (1)

1976 (1)

1968 (1)

R. J. Collier, “Holography and integral photography,” Physics Today, July1968, 55–63.

1967 (1)

1963 (1)

1953 (1)

J. A. Norling, “The stereoscopic art-a reprint,” J. SMPTE 60, 286–308 (1953).
[CrossRef]

1948 (1)

D. A. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

1931 (2)

1930 (1)

1908 (1)

M. G. Lippmann, “Epreuves reversiles donnant la sensation du relief,” J. de Phys. Ser. 4 7, 821–825 (1908).

Arai, J.

F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.

Collier, R. J.

R. J. Collier, “Holography and integral photography,” Physics Today, July1968, 55–63.

Cutting, J.

J. Cutting, P. Vishton, “Perceiving layout and knowing distance: the integration, relative potency and contextual use of different information about depth,” in Perception of Space and Motion, W. Epstein, S. Rogers, eds. (Academic, New York, 1995), pp. 69–118.
[CrossRef]

Ezra, D.

J. Harrold, A. Jacobs, G. J. Woodgate, D. Ezra, “Performance of a convertible, 2D and 3D parallax barrier autostereoscopic display,” in Proceedings of the Society for Information Display Twentieth International Display Research Conference, J. Morreale, ed. (Society of Information Display, San Jose, Calif., 2000), pp. 280–283.

Fisher, R. E.

R. E. Fisher, “Optics for head-mounted displays,” Inf. Displ. 10, 12–18 (1994).

Fraser, S. M.

S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
[CrossRef]

Gabor, D. A.

D. A. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Goldstein, E.

E. Goldstein, Sensation and Perception, 3rd ed. (Wadsworth, Belmont, Calif.1989).

Hamasaki, J.

Harrold, J.

J. Harrold, A. Jacobs, G. J. Woodgate, D. Ezra, “Performance of a convertible, 2D and 3D parallax barrier autostereoscopic display,” in Proceedings of the Society for Information Display Twentieth International Display Research Conference, J. Morreale, ed. (Society of Information Display, San Jose, Calif., 2000), pp. 280–283.

Higuchi, H.

Hoshino, H.

F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.

Iizuka, K.

K. Iizuka, “Cellophane as a half-waveplate and its use for converting a laptop computer screen into a 3D display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
[CrossRef]

Isono, H.

H. Isono, M. Yasuda, “Flicker-free field sequential stereoscopic TV system and measurement of human depth perception,” J. SMPTE 99, 138–141 (1990).
[CrossRef]

Ives, H. E.

Jacobs, A.

J. Harrold, A. Jacobs, G. J. Woodgate, D. Ezra, “Performance of a convertible, 2D and 3D parallax barrier autostereoscopic display,” in Proceedings of the Society for Information Display Twentieth International Display Research Conference, J. Morreale, ed. (Society of Information Display, San Jose, Calif., 2000), pp. 280–283.

Judge, A. W.

A. W. Judge, Stereoscopic Photography: Its Application to Science, Industry and Education (Chapman and Hall, London, 1950).

Leith, E. N.

Lippmann, M. G.

M. G. Lippmann, “Epreuves reversiles donnant la sensation du relief,” J. de Phys. Ser. 4 7, 821–825 (1908).

Lipton, L.

L. Lipton, “Selection devices for field-sequential stereoscopic displays: a brief history,” in Stereoscopic Displays and Applications II, J. O. Merritt, S. S. Fisher, eds., Proc. SPIE1457, 274–282 (1991).
[CrossRef]

Mair, L. S.

S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
[CrossRef]

Mason, S.

S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
[CrossRef]

McKay, S.

S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
[CrossRef]

Norling, J. A.

J. A. Norling, “The stereoscopic art-a reprint,” J. SMPTE 60, 286–308 (1953).
[CrossRef]

Okano, F.

F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.

Okoshi, T.

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

T. Okoshi, K. Oshima, “Three-dimensional imaging from a unidirectional hologram: wide-viewing-zone projection type,” Appl. Opt. 15, 1023–1029 (1976).
[CrossRef] [PubMed]

T. Okoshi, Three-Dimensional Imaging Engineering, 2nd ed. (in Japanese) (Asakura, Tokyo, 1997). [An updated version of the English translation Three-Dimensional Imaging Techniques (Academic, New York, 1976).]

Oshima, K.

Pfautz, J. D.

J. D. Pfautz, “Depth perception in computer graphics,” Technical Report 546, (University of Cambridge Computer Laboratory, Cambridge, UK, 2002).

Sedgwick, H.

H. Sedgwick, “The geometry of spatial layout in pictorial representation,” in The Perception of Pictures, Vol. 1, Alberti’s Window: The Projective Model of Pictorial Information, M. Hagen, ed. (Academic, London, 1980), pp. 34–90.

Sugiyama, H.

H. Sugiyama, “Route guidance services for pedestrians,” J. Inst. Electron. Commun. Eng. Jpn. 86, 358–363 (2003).

H. Sugiyama, “A pedestrian navigation system based on a navigation demand model,” presented at the Eighth World Congress on Intelligent Transport Systems, Sydney, Australia, 30 September–4 October 2001.

Traub, A. C.

Upatnieks, J.

Vishton, P.

J. Cutting, P. Vishton, “Perceiving layout and knowing distance: the integration, relative potency and contextual use of different information about depth,” in Perception of Space and Motion, W. Epstein, S. Rogers, eds. (Academic, New York, 1995), pp. 69–118.
[CrossRef]

Waddell, P.

S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
[CrossRef]

Woodgate, G. J.

J. Harrold, A. Jacobs, G. J. Woodgate, D. Ezra, “Performance of a convertible, 2D and 3D parallax barrier autostereoscopic display,” in Proceedings of the Society for Information Display Twentieth International Display Research Conference, J. Morreale, ed. (Society of Information Display, San Jose, Calif., 2000), pp. 280–283.

Yamada, M.

F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.

Yasuda, M.

H. Isono, M. Yasuda, “Flicker-free field sequential stereoscopic TV system and measurement of human depth perception,” J. SMPTE 99, 138–141 (1990).
[CrossRef]

Yuyama, I.

F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.

Appl. Opt. (3)

Inf. Displ. (1)

R. E. Fisher, “Optics for head-mounted displays,” Inf. Displ. 10, 12–18 (1994).

J. de Phys. Ser. 4 (1)

M. G. Lippmann, “Epreuves reversiles donnant la sensation du relief,” J. de Phys. Ser. 4 7, 821–825 (1908).

J. Inst. Electron. Commun. Eng. Jpn. (1)

H. Sugiyama, “Route guidance services for pedestrians,” J. Inst. Electron. Commun. Eng. Jpn. 86, 358–363 (2003).

J. Opt. Soc. Am. (4)

J. SMPTE (2)

H. Isono, M. Yasuda, “Flicker-free field sequential stereoscopic TV system and measurement of human depth perception,” J. SMPTE 99, 138–141 (1990).
[CrossRef]

J. A. Norling, “The stereoscopic art-a reprint,” J. SMPTE 60, 286–308 (1953).
[CrossRef]

Nature (1)

D. A. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Physics Today (1)

R. J. Collier, “Holography and integral photography,” Physics Today, July1968, 55–63.

Proc. IEEE (1)

T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68, 548–564 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

K. Iizuka, “Cellophane as a half-waveplate and its use for converting a laptop computer screen into a 3D display,” Rev. Sci. Instrum. 74, 3636–3639 (2003).
[CrossRef]

Other (12)

J. Harrold, A. Jacobs, G. J. Woodgate, D. Ezra, “Performance of a convertible, 2D and 3D parallax barrier autostereoscopic display,” in Proceedings of the Society for Information Display Twentieth International Display Research Conference, J. Morreale, ed. (Society of Information Display, San Jose, Calif., 2000), pp. 280–283.

J. Cutting, P. Vishton, “Perceiving layout and knowing distance: the integration, relative potency and contextual use of different information about depth,” in Perception of Space and Motion, W. Epstein, S. Rogers, eds. (Academic, New York, 1995), pp. 69–118.
[CrossRef]

E. Goldstein, Sensation and Perception, 3rd ed. (Wadsworth, Belmont, Calif.1989).

H. Sedgwick, “The geometry of spatial layout in pictorial representation,” in The Perception of Pictures, Vol. 1, Alberti’s Window: The Projective Model of Pictorial Information, M. Hagen, ed. (Academic, London, 1980), pp. 34–90.

J. D. Pfautz, “Depth perception in computer graphics,” Technical Report 546, (University of Cambridge Computer Laboratory, Cambridge, UK, 2002).

S. McKay, S. Mason, L. S. Mair, P. Waddell, S. M. Fraser, “Stereoscopic display using a 1.2-m diameter stretchable membrane mirror,” in Stereoscopic Displays and Virtual Reality Systems VI, J. O. Merritt, M. T. Bolas, S. S. Fisher, eds., Proc. SPIE3639, 122–131 (1999).
[CrossRef]

H. Sugiyama, “A pedestrian navigation system based on a navigation demand model,” presented at the Eighth World Congress on Intelligent Transport Systems, Sydney, Australia, 30 September–4 October 2001.

F. Okano, H. Hoshino, J. Arai, M. Yamada, I. Yuyama, “Integral three-dimensional video system,” in Three Dimensional Video and Display: Devices and Systems, B. Javidi, F. Okano, eds., Vol. CR76 of SPIE Critical Review Series (SPIE Press, Bellingham, Wash., 2001), pp. 90–116.

L. Lipton, “Selection devices for field-sequential stereoscopic displays: a brief history,” in Stereoscopic Displays and Applications II, J. O. Merritt, S. S. Fisher, eds., Proc. SPIE1457, 274–282 (1991).
[CrossRef]

A. W. Judge, Stereoscopic Photography: Its Application to Science, Industry and Education (Chapman and Hall, London, 1950).

T. Izumi, ed., Fundamentals of 3D Vision (Ohm-sha, Tokyo, 1995).

T. Okoshi, Three-Dimensional Imaging Engineering, 2nd ed. (in Japanese) (Asakura, Tokyo, 1997). [An updated version of the English translation Three-Dimensional Imaging Techniques (Academic, New York, 1976).]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of stereoscopy. (a) The observer sees the ball in front of his or her eyes. (b) A picture of the ball is drawn on the screen by extension of the lines from the eyes to the ball. (c) The observer sees two balls on the screen, and there is no stereoscopic effect as yet. To produce a stereoscopic effect, the views represented by the dashed lines must be eliminated, which we accomplish using the gating behavior of polarizers.

Fig. 2
Fig. 2

Demonstrating the gating behavior of polarizers. (a) A triangular polarizer is oriented to block the camera phone’s display light. (b) The orientation of the triangular polarizer is rotated by 90° to transmit the display light.

Fig. 3
Fig. 3

Taking images of a stereoscopic pair by use of two transmitter camera phones: (a) geometry and (b) corresponding photograph.

Fig. 4
Fig. 4

Viewing the transposed stereoscopic image in the receiver phones through polarizer glasses: (a) geometry and (b) corresponding photograph.

Fig. 5
Fig. 5

Wedge prisms shift the image to the original location to relieve eye fatigue.

Fig. 6
Fig. 6

Eliminating the need to wear glasses.

Fig. 7
Fig. 7

Geometry for taking a stereoscopic pair of pictures by means of slip-on stereoscopic mirrors.

Fig. 8
Fig. 8

Taking a stereoscopic pair of pictures by means of slip-on stereoscopic mirrors.

Fig. 9
Fig. 9

Images taken by the camera phone were transmitted to a laptop computer to compare the picture quality (a) taken in an ordinary manner and (b) taken with the slip-on stereoscopic mirrors.

Fig. 10
Fig. 10

The V sign image shifts when viewed with the eyes aligned near the edges of a magnifying glass. The shift depends on the stretch of the arm. By adjusting the stretch of the arm, a three-finger V sign can be observed.

Metrics