Abstract

Resonance-enhanced multiphoton ionization (REMPI) is investigated as a potential technique for real-time monitoring of selected volatile organochloride compounds (VOCs). In a proof-of-concept experiment, the progress of the reductive-degradation of tetrachloroethylene (PCE) to trichloroethylene (TCE) by zero-valent zinc was monitored by REMPI measurements performed in the headspace above the PCE solution. Two-photon resonant REMPI spectra of TCE and PCE were recorded over the wavelength range 305–320 nm. The concentrations of PCE and TCE in the headspace were monitored by measurement of the ionization signal with 315.64- and 310.48-nm excitation for PCE and TCE, respectively. Calibration curves yielded a linear range of more than 2 orders of magnitude for both compounds. The REMPI headspace results agreed well with the solution-phase results from gas chromatography analysis, which was used for independent verification of the progress of the reaction.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
    [CrossRef]
  2. D. R. Nesselrodt, T. Baer, “Cyclic ketone mixture analysis using 2+1 resonance-enhanced multiphoton ionization mass-spectrometry,” Anal. Chem. 66, 2497–2504 (1994).
    [CrossRef]
  3. C. H. Sin, R. Tembreull, D. M. Lubman, “Resonant 2-photon ionization spectroscopy in supersonic beams for discrimination of di-substituted benzenes in mass-spectrometry,” Anal. Chem. 56, 2776–2781 (1984).
    [CrossRef]
  4. D. R. Nesselrodt, A. R. Potts, T. Baer, “Observation of ethyl-substituted cyclohexanone and cyclopentanone rotamers using resonance-enhanced multiphoton ionization spectroscopy,” J. Phys. Chem. 99, 4458–4465 (1995).
    [CrossRef]
  5. M. B. Robin, “Multiphoton fragmentation and ionization,” Appl. Opt. 19, 3941–3947 (1980).
    [CrossRef] [PubMed]
  6. P. M. Johnson, “Molecular multiphoton ionization spectroscopy,” Acc. Chem. Res. 13, 20–26 (1980).
    [CrossRef]
  7. R. C. Chinni, “In-situ characterization using pulsed laser systems and hyperspectral imaging,” Ph.D. dissertation (University of South Carolina, Columbia, S. C.2002).
  8. B. M. Cullum, S. K. Shealy, S. M. Angel, “Fiber-optic resonance-enhanced multiphoton ionization probe for in situ detection of aromatic contamination,” Appl. Spectrosc. 53, 1646–1650 (1999).
    [CrossRef]
  9. W. S. Orth, R. W. Gillham, “Dechlorination of trichloroethylene in aqueous solution using Fe0,” Environ. Sci. Technol. 30, 66–71 (1996).
    [CrossRef]
  10. T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).
  11. B. A. Williams, T. A. Cool, “Resonance ionization spectroscopy of the chloroethylenes,” J. Phys. Chem. 97, 1270–1282 (1993).
    [CrossRef]
  12. B. A. Williams, T. A. Cool, C. M. Rohlfing, “Multiphoton spectroscopy of Rydberg states of tetrachloroethylene,” J. Chem. Phys. 93, 1521–1532 (1990).
    [CrossRef]
  13. W. A. Arnold, A. L. Roberts, “Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0),” Environ. Sci. Technol. 32, 3017–3025 (1998).
    [CrossRef]

1999 (1)

1998 (1)

W. A. Arnold, A. L. Roberts, “Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0),” Environ. Sci. Technol. 32, 3017–3025 (1998).
[CrossRef]

1997 (1)

T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).

1996 (1)

W. S. Orth, R. W. Gillham, “Dechlorination of trichloroethylene in aqueous solution using Fe0,” Environ. Sci. Technol. 30, 66–71 (1996).
[CrossRef]

1995 (1)

D. R. Nesselrodt, A. R. Potts, T. Baer, “Observation of ethyl-substituted cyclohexanone and cyclopentanone rotamers using resonance-enhanced multiphoton ionization spectroscopy,” J. Phys. Chem. 99, 4458–4465 (1995).
[CrossRef]

1994 (1)

D. R. Nesselrodt, T. Baer, “Cyclic ketone mixture analysis using 2+1 resonance-enhanced multiphoton ionization mass-spectrometry,” Anal. Chem. 66, 2497–2504 (1994).
[CrossRef]

1993 (2)

B. A. Williams, T. A. Cool, “Resonance ionization spectroscopy of the chloroethylenes,” J. Phys. Chem. 97, 1270–1282 (1993).
[CrossRef]

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

1990 (1)

B. A. Williams, T. A. Cool, C. M. Rohlfing, “Multiphoton spectroscopy of Rydberg states of tetrachloroethylene,” J. Chem. Phys. 93, 1521–1532 (1990).
[CrossRef]

1984 (1)

C. H. Sin, R. Tembreull, D. M. Lubman, “Resonant 2-photon ionization spectroscopy in supersonic beams for discrimination of di-substituted benzenes in mass-spectrometry,” Anal. Chem. 56, 2776–2781 (1984).
[CrossRef]

1980 (2)

M. B. Robin, “Multiphoton fragmentation and ionization,” Appl. Opt. 19, 3941–3947 (1980).
[CrossRef] [PubMed]

P. M. Johnson, “Molecular multiphoton ionization spectroscopy,” Acc. Chem. Res. 13, 20–26 (1980).
[CrossRef]

Angel, S. M.

Arnold, W. A.

W. A. Arnold, A. L. Roberts, “Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0),” Environ. Sci. Technol. 32, 3017–3025 (1998).
[CrossRef]

Baer, T.

D. R. Nesselrodt, A. R. Potts, T. Baer, “Observation of ethyl-substituted cyclohexanone and cyclopentanone rotamers using resonance-enhanced multiphoton ionization spectroscopy,” J. Phys. Chem. 99, 4458–4465 (1995).
[CrossRef]

D. R. Nesselrodt, T. Baer, “Cyclic ketone mixture analysis using 2+1 resonance-enhanced multiphoton ionization mass-spectrometry,” Anal. Chem. 66, 2497–2504 (1994).
[CrossRef]

Burris, D. R.

T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).

Campbell, T. J.

T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).

Chinni, R. C.

R. C. Chinni, “In-situ characterization using pulsed laser systems and hyperspectral imaging,” Ph.D. dissertation (University of South Carolina, Columbia, S. C.2002).

Clark, A.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Cool, T. A.

B. A. Williams, T. A. Cool, “Resonance ionization spectroscopy of the chloroethylenes,” J. Phys. Chem. 97, 1270–1282 (1993).
[CrossRef]

B. A. Williams, T. A. Cool, C. M. Rohlfing, “Multiphoton spectroscopy of Rydberg states of tetrachloroethylene,” J. Chem. Phys. 93, 1521–1532 (1990).
[CrossRef]

Cullum, B. M.

Gillham, R. W.

W. S. Orth, R. W. Gillham, “Dechlorination of trichloroethylene in aqueous solution using Fe0,” Environ. Sci. Technol. 30, 66–71 (1996).
[CrossRef]

Johnson, P. M.

P. M. Johnson, “Molecular multiphoton ionization spectroscopy,” Acc. Chem. Res. 13, 20–26 (1980).
[CrossRef]

Ledingham, K. W. D.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Lubman, D. M.

C. H. Sin, R. Tembreull, D. M. Lubman, “Resonant 2-photon ionization spectroscopy in supersonic beams for discrimination of di-substituted benzenes in mass-spectrometry,” Anal. Chem. 56, 2776–2781 (1984).
[CrossRef]

Marshall, A.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Nesselrodt, D. R.

D. R. Nesselrodt, A. R. Potts, T. Baer, “Observation of ethyl-substituted cyclohexanone and cyclopentanone rotamers using resonance-enhanced multiphoton ionization spectroscopy,” J. Phys. Chem. 99, 4458–4465 (1995).
[CrossRef]

D. R. Nesselrodt, T. Baer, “Cyclic ketone mixture analysis using 2+1 resonance-enhanced multiphoton ionization mass-spectrometry,” Anal. Chem. 66, 2497–2504 (1994).
[CrossRef]

Orth, W. S.

W. S. Orth, R. W. Gillham, “Dechlorination of trichloroethylene in aqueous solution using Fe0,” Environ. Sci. Technol. 30, 66–71 (1996).
[CrossRef]

Potts, A. R.

D. R. Nesselrodt, A. R. Potts, T. Baer, “Observation of ethyl-substituted cyclohexanone and cyclopentanone rotamers using resonance-enhanced multiphoton ionization spectroscopy,” J. Phys. Chem. 99, 4458–4465 (1995).
[CrossRef]

Roberts, A. L.

W. A. Arnold, A. L. Roberts, “Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0),” Environ. Sci. Technol. 32, 3017–3025 (1998).
[CrossRef]

T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).

Robin, M. B.

Rohlfing, C. M.

B. A. Williams, T. A. Cool, C. M. Rohlfing, “Multiphoton spectroscopy of Rydberg states of tetrachloroethylene,” J. Chem. Phys. 93, 1521–1532 (1990).
[CrossRef]

Sander, J.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Shealy, S. K.

Sin, C. H.

C. H. Sin, R. Tembreull, D. M. Lubman, “Resonant 2-photon ionization spectroscopy in supersonic beams for discrimination of di-substituted benzenes in mass-spectrometry,” Anal. Chem. 56, 2776–2781 (1984).
[CrossRef]

Singhal, R. P.

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Tembreull, R.

C. H. Sin, R. Tembreull, D. M. Lubman, “Resonant 2-photon ionization spectroscopy in supersonic beams for discrimination of di-substituted benzenes in mass-spectrometry,” Anal. Chem. 56, 2776–2781 (1984).
[CrossRef]

Wells, J. R.

T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).

Williams, B. A.

B. A. Williams, T. A. Cool, “Resonance ionization spectroscopy of the chloroethylenes,” J. Phys. Chem. 97, 1270–1282 (1993).
[CrossRef]

B. A. Williams, T. A. Cool, C. M. Rohlfing, “Multiphoton spectroscopy of Rydberg states of tetrachloroethylene,” J. Chem. Phys. 93, 1521–1532 (1990).
[CrossRef]

Acc. Chem. Res. (1)

P. M. Johnson, “Molecular multiphoton ionization spectroscopy,” Acc. Chem. Res. 13, 20–26 (1980).
[CrossRef]

Anal. Chem. (2)

D. R. Nesselrodt, T. Baer, “Cyclic ketone mixture analysis using 2+1 resonance-enhanced multiphoton ionization mass-spectrometry,” Anal. Chem. 66, 2497–2504 (1994).
[CrossRef]

C. H. Sin, R. Tembreull, D. M. Lubman, “Resonant 2-photon ionization spectroscopy in supersonic beams for discrimination of di-substituted benzenes in mass-spectrometry,” Anal. Chem. 56, 2776–2781 (1984).
[CrossRef]

Analyst (1)

A. Clark, K. W. D. Ledingham, A. Marshall, J. Sander, R. P. Singhal, “Attomole detection of nitroaromatic vapors using resonance-enhanced multiphoton ionization mass-spectrometry,” Analyst 118, 601–607 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Environ. Sci. Technol. (2)

W. S. Orth, R. W. Gillham, “Dechlorination of trichloroethylene in aqueous solution using Fe0,” Environ. Sci. Technol. 30, 66–71 (1996).
[CrossRef]

W. A. Arnold, A. L. Roberts, “Pathways of chlorinated ethylene and chlorinated acetylene reaction with Zn (0),” Environ. Sci. Technol. 32, 3017–3025 (1998).
[CrossRef]

Environ. Toxicol. Chem. (1)

T. J. Campbell, D. R. Burris, A. L. Roberts, J. R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environ. Toxicol. Chem. 16, 625–630 (1997).

J. Chem. Phys. (1)

B. A. Williams, T. A. Cool, C. M. Rohlfing, “Multiphoton spectroscopy of Rydberg states of tetrachloroethylene,” J. Chem. Phys. 93, 1521–1532 (1990).
[CrossRef]

J. Phys. Chem. (2)

B. A. Williams, T. A. Cool, “Resonance ionization spectroscopy of the chloroethylenes,” J. Phys. Chem. 97, 1270–1282 (1993).
[CrossRef]

D. R. Nesselrodt, A. R. Potts, T. Baer, “Observation of ethyl-substituted cyclohexanone and cyclopentanone rotamers using resonance-enhanced multiphoton ionization spectroscopy,” J. Phys. Chem. 99, 4458–4465 (1995).
[CrossRef]

Other (1)

R. C. Chinni, “In-situ characterization using pulsed laser systems and hyperspectral imaging,” Ph.D. dissertation (University of South Carolina, Columbia, S. C.2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the REMPI experimental setup.

Fig. 2
Fig. 2

Schematic diagram of the REMPI measurement system: A, detection cell; B, reactor assembly with dimensions of the REMPI cell port; C, brass elbow connector. The total volume of the solution is 120 mL. The headspace volume above the solution is estimated to be 250 mL.

Fig. 3
Fig. 3

(2 + 1) REMPI spectra of top, TCE and bottom, PCE measured in the headspace above 30-ppm solutions (the TCE spectrum is offset for clarity).

Fig. 4
Fig. 4

Calibration of a TCE-spiked water sample. Each calibration point represents the average of three measurements at 310.48 nm; error bars show ±1 standard deviation.

Fig. 5
Fig. 5

Calibration of a PCE-spiked water sample. Each calibration point represents the average of three measurements at 315.64 nm; error bars show ±1 standard deviation.

Fig. 6
Fig. 6

REMPI spectra of left, TCE and right, PCE measured in the headspace at selected times during PCE degradation by use of zero-valent zinc: (a) before addition of Zn, and (b) 4 h after, (c) 12 h after, and (d) 24 h after addition of Zn.

Fig. 7
Fig. 7

PCE (open circles) and TCE (open triangles) concentrations obtained by GC (solid curves) measured with solution aliquots, and PCE (crosses) and TCE (open squares) concentrations obtained by REMPI (dashed curve) measured in the headspace above the solution.

Metrics