Abstract

Two-dimensional light-scattering patterns from aggregates have undergone feature extraction followed by multivariate statistical analysis. The aggregates are comprised of primary particles of varying shape and size. Morphological descriptors (features) were extracted by a nonlinear filtering algorithm (spectrum enhancement) and then processed by principal component analysis and discriminant function analysis. The analysis was performed on two data sets, one in which the aggregates had a fixed primary particle size but varied in overall dimension and another in which the aggregate size was fixed but the primary particle size varied. Classification of the samples was performed adequately, providing some distinction among the limited classes that were analyzed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Zerull, B. Å. S. Gustafson, K. Schulz, E. Thiele-Corbach, “Scattering by aggregates with and without an absorbing mantle: microwave analog experiments,” Appl. Opt. 32, 4088–4100 (1993).
    [PubMed]
  2. G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
    [CrossRef]
  3. S. Holler, Y.-L. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
    [CrossRef]
  4. S. Holler, J.-C. Auger, B. Stout, Y.-L. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
    [CrossRef]
  5. Y.-L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, J. D. Eversole, “Characterizing and monitoring of respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
    [CrossRef] [PubMed]
  6. K. A. Fuller, “Scattering and absorption cross sections of compounded spheres: I. Theory for external aggregation,” J. Opt. Soc. Am. A 11, 3251–3260 (1994).
    [CrossRef]
  7. D. W. Mackowski, M. I. Mishchenko, “Calculation of the T matrix and scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
    [CrossRef]
  8. D. Ngo, G. Videen, R. Dalling, “Chaotic light scattering from a system of osculating, conducting spheres,” Phys. Lett. A 227, 197–202 (1997).
    [CrossRef]
  9. G. Videen, W. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).
    [CrossRef]
  10. P. Sacoto, F. Lanza, H. Suarez, L. H. Garcia-Rubio, “A novel automatic dilution system for on-line particle size analysis,” in Particle Size Distribution III, T. Provder, ed. (American Chemical Society, Washington, D.C., 1998), pp. 23–29.
    [CrossRef]
  11. D. R. Bowes, A. M. Langer, A. N. Rohl, “Nature and range of mineral dusts in the environment,” Philos. Trans. R. Soc. London Ser. A 286, 593–610 (1977).
    [CrossRef]
  12. E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).
  13. J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
    [CrossRef]
  14. D. R. Huffman, “Interstellar grains. The interaction of light with a small particle system,” Adv. Phys. 26, 129–230 (1977).
    [CrossRef]
  15. C. M. Sorensen, J. Cai, N. Lu, “Light scattering measurements of monomer size, monomers per aggregate and fractal dimensions for soot aggregates in flames,” Appl. Opt. 31, 6547–6557 (1992).
    [CrossRef] [PubMed]
  16. M. Z. Jacobson, “Strong radiative heating due to the mixing of black carbon in atmospheric aerosols,” Nature (London) 409, 695–697 (2001).
    [CrossRef]
  17. R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
    [CrossRef]
  18. A. J. Cox, A. J. DeWeerd, J. Lindin, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002).
    [CrossRef]
  19. P. Chylek, V. Ramaswamy, A. Ashkin, J. M. Dziedzic, “Simultaneous determination of refractive index and size of spherical dielectric particles from light scattering data,” Appl. Opt. 22, 2302–2307 (1983).
    [CrossRef] [PubMed]
  20. C. W. Chan, W. K. Lee, “Measurement of a liquid refractive index by using high-order rainbows,” J. Opt. Soc. Am. B 13, 532–535 (1996).
    [CrossRef]
  21. P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).
    [CrossRef]
  22. P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
    [CrossRef]
  23. P. H. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
    [CrossRef]
  24. P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurements for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
    [CrossRef]
  25. G. F. Crosta, S. Zomer, Y.-L. Pan, S. Holler, “Classification of single-particle two-dimensional angular optical scattering patterns and heuristic scatter reconstruction,” Opt. Eng. 42, 2689–2701 (2003).
    [CrossRef]
  26. J. E. Jackson, A User’s Guide to Principal Components (Wiley, New York, 1991).
    [CrossRef]
  27. J. Mike, Classification Algorithms (Collins, London, 1985).
  28. J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Van-Reenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, Suppl. 1, 965–966 (1998).
    [CrossRef]
  29. The near-backward direction was chosen for these experiments to enhance the morphological and material effects the aggregate had on the light scattering. The forward scattering is dominated by diffraction and does not offer as much useful information about particle morphology and material properties as the backward-scattering direction.
  30. The laboratory reference frame differs from the traditional scattering reference frame in that the illuminating laser is directed along the x axis, and the z axis points up. Traditionally the laser source propagates along the z axis with the x axis directed up. The conventional geometry is typically chosen to simplify scattering calculations. A more detailed description of the laboratory reference frame is given in Ref. 4, which also includes a transformation between the two geometries.
  31. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).
  32. D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
    [CrossRef] [PubMed]
  33. W. R. Klecka, Discriminant Analysis: Quantitative Applications in the Social Sciences Series, No. 19 (Sage, Thousand Oaks, Calif., 1980).
  34. H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
    [CrossRef] [PubMed]
  35. S. K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, 2nd ed. (Radius, New York, 1991).
  36. S. Holler, M. Surbek, R. K. Chang, Y.-L. Pan, “Two-dimensional angular optical scattering patterns as droplets evolve into clusters,” Opt. Lett. 24, 1185–1187 (1999).
    [CrossRef]
  37. S. Arnold, A. Ghaemi, P. Hendrie, K. A. Fuller, “Morphological resonances detected from a cluster of two microspheres,” Opt. Lett. 19, 156–158 (1994).
    [CrossRef] [PubMed]

2003 (3)

Y.-L. Pan, K. B. Aptowicz, R. K. Chang, M. Hart, J. D. Eversole, “Characterizing and monitoring of respiratory aerosols by light scattering,” Opt. Lett. 28, 589–591 (2003).
[CrossRef] [PubMed]

G. F. Crosta, S. Zomer, Y.-L. Pan, S. Holler, “Classification of single-particle two-dimensional angular optical scattering patterns and heuristic scatter reconstruction,” Opt. Eng. 42, 2689–2701 (2003).
[CrossRef]

H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
[CrossRef] [PubMed]

2002 (1)

A. J. Cox, A. J. DeWeerd, J. Lindin, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002).
[CrossRef]

2001 (1)

M. Z. Jacobson, “Strong radiative heating due to the mixing of black carbon in atmospheric aerosols,” Nature (London) 409, 695–697 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (6)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Van-Reenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, Suppl. 1, 965–966 (1998).
[CrossRef]

P. H. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

S. Holler, Y.-L. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

G. Videen, W. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).
[CrossRef]

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

1997 (1)

D. Ngo, G. Videen, R. Dalling, “Chaotic light scattering from a system of osculating, conducting spheres,” Phys. Lett. A 227, 197–202 (1997).
[CrossRef]

1996 (4)

D. W. Mackowski, M. I. Mishchenko, “Calculation of the T matrix and scattering matrix for ensembles of spheres,” J. Opt. Soc. Am. A 13, 2266–2278 (1996).
[CrossRef]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

C. W. Chan, W. K. Lee, “Measurement of a liquid refractive index by using high-order rainbows,” J. Opt. Soc. Am. B 13, 532–535 (1996).
[CrossRef]

1994 (3)

1993 (1)

1992 (1)

1984 (1)

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).
[CrossRef]

1983 (1)

1977 (2)

D. R. Huffman, “Interstellar grains. The interaction of light with a small particle system,” Adv. Phys. 26, 129–230 (1977).
[CrossRef]

D. R. Bowes, A. M. Langer, A. N. Rohl, “Nature and range of mineral dusts in the environment,” Philos. Trans. R. Soc. London Ser. A 286, 593–610 (1977).
[CrossRef]

1974 (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Alexander-Buckley, K.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

Aptowicz, K. B.

Arnold, S.

Ashkin, A.

Auger, J.-C.

Barton, J. E.

Bialek, W.

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).

Bottiger, J. R.

Boutou, V.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Bowes, D. R.

D. R. Bowes, A. M. Langer, A. N. Rohl, “Nature and range of mineral dusts in the environment,” Philos. Trans. R. Soc. London Ser. A 286, 593–610 (1977).
[CrossRef]

Brereton, R. G.

H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
[CrossRef] [PubMed]

Cai, J.

Carter, J. F.

H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
[CrossRef] [PubMed]

Chan, C. W.

Chang, R. K.

Chen, G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Chylek, P.

Clark, J. M.

P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurements for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

Cox, A. J.

A. J. Cox, A. J. DeWeerd, J. Lindin, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002).
[CrossRef]

Crosta, G. F.

G. F. Crosta, S. Zomer, Y.-L. Pan, S. Holler, “Classification of single-particle two-dimensional angular optical scattering patterns and heuristic scatter reconstruction,” Opt. Eng. 42, 2689–2701 (2003).
[CrossRef]

Dalling, R.

D. Ngo, G. Videen, R. Dalling, “Chaotic light scattering from a system of osculating, conducting spheres,” Phys. Lett. A 227, 197–202 (1997).
[CrossRef]

de Saeger, E.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Deluca, P. J.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Van-Reenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, Suppl. 1, 965–966 (1998).
[CrossRef]

DeWeerd, A. J.

A. J. Cox, A. J. DeWeerd, J. Lindin, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002).
[CrossRef]

Dziedzic, J. M.

Eckers, C.

H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
[CrossRef] [PubMed]

Eversole, J. D.

Frejafon, E.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Fu, Q.

G. Videen, W. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).
[CrossRef]

Fuller, K. A.

Garcia-Rubio, L. H.

P. Sacoto, F. Lanza, H. Suarez, L. H. Garcia-Rubio, “A novel automatic dilution system for on-line particle size analysis,” in Particle Size Distribution III, T. Provder, ed. (American Chemical Society, Washington, D.C., 1998), pp. 23–29.
[CrossRef]

Ghaemi, A.

Gustafson, B. Å. S.

Hansen, J. E.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Hart, M.

Hart, M. B.

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[CrossRef]

Hendrie, P.

Hill, S. C.

S. Holler, Y.-L. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489–1491 (1998).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Hillis, D. B.

Hirst, E.

P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurements for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

Holler, S.

Huffman, D. R.

D. R. Huffman, “Interstellar grains. The interaction of light with a small particle system,” Adv. Phys. 26, 129–230 (1977).
[CrossRef]

Jackson, J. E.

J. E. Jackson, A User’s Guide to Principal Components (Wiley, New York, 1991).
[CrossRef]

Jacobson, M. Z.

M. Z. Jacobson, “Strong radiative heating due to the mixing of black carbon in atmospheric aerosols,” Nature (London) 409, 695–697 (2001).
[CrossRef]

Kachigan, S. K.

S. K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, 2nd ed. (Radius, New York, 1991).

Kasparian, J.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Kaye, P. H.

P. H. Kaye, J. E. Barton, E. Hirst, J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurements for the classification of airborne particles,” Appl. Opt. 39, 3738–3745 (2000).
[CrossRef]

P. H. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

Klecka, W. R.

W. R. Klecka, Discriminant Analysis: Quantitative Applications in the Social Sciences Series, No. 19 (Sage, Thousand Oaks, Calif., 1980).

Krämer, B.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Langer, A. M.

D. R. Bowes, A. M. Langer, A. N. Rohl, “Nature and range of mineral dusts in the environment,” Philos. Trans. R. Soc. London Ser. A 286, 593–610 (1977).
[CrossRef]

Lanza, F.

P. Sacoto, F. Lanza, H. Suarez, L. H. Garcia-Rubio, “A novel automatic dilution system for on-line particle size analysis,” in Particle Size Distribution III, T. Provder, ed. (American Chemical Society, Washington, D.C., 1998), pp. 23–29.
[CrossRef]

Lee, W. K.

Leisner, T.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Lindin, J.

A. J. Cox, A. J. DeWeerd, J. Lindin, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002).
[CrossRef]

Lu, N.

Mackowski, D. W.

Marston, P. L.

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).
[CrossRef]

Mike, J.

J. Mike, Classification Algorithms (Collins, London, 1985).

Mishchenko, M. I.

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Ngo, D.

D. Ngo, G. Videen, R. Dalling, “Chaotic light scattering from a system of osculating, conducting spheres,” Phys. Lett. A 227, 197–202 (1997).
[CrossRef]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[CrossRef]

Ottobrini, B.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Pan, Y.-L.

Pinnick, R. G.

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Rairoux, P.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Ramaswamy, V.

Rambaldi, P.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Rohl, A. N.

D. R. Bowes, A. M. Langer, A. N. Rohl, “Nature and range of mineral dusts in the environment,” Philos. Trans. R. Soc. London Ser. A 286, 593–610 (1977).
[CrossRef]

Ruderman, D. L.

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

Sacoto, P.

P. Sacoto, F. Lanza, H. Suarez, L. H. Garcia-Rubio, “A novel automatic dilution system for on-line particle size analysis,” in Particle Size Distribution III, T. Provder, ed. (American Chemical Society, Washington, D.C., 1998), pp. 23–29.
[CrossRef]

Saunders, S.

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

Schulz, K.

Shen, H.

H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
[CrossRef] [PubMed]

Sorensen, C. M.

Stout, B.

Stuebing, E. W.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Van-Reenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, Suppl. 1, 965–966 (1998).
[CrossRef]

Suarez, H.

P. Sacoto, F. Lanza, H. Suarez, L. H. Garcia-Rubio, “A novel automatic dilution system for on-line particle size analysis,” in Particle Size Distribution III, T. Provder, ed. (American Chemical Society, Washington, D.C., 1998), pp. 23–29.
[CrossRef]

Sun, W.

G. Videen, W. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).
[CrossRef]

Surbek, M.

Thiele-Corbach, E.

Travis, L. D.

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Trinh, E. H.

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).
[CrossRef]

Ulbricht, M.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Van-Reenen, D. R.

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Van-Reenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, Suppl. 1, 965–966 (1998).
[CrossRef]

Vezin, B.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Videen, G.

S. Holler, J.-C. Auger, B. Stout, Y.-L. Pan, J. R. Bottiger, R. K. Chang, G. Videen, “Observations and calculations of light scattering from clusters of spheres,” Appl. Opt. 39, 6873–6887 (2000).
[CrossRef]

G. Videen, W. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

D. Ngo, G. Videen, R. Dalling, “Chaotic light scattering from a system of osculating, conducting spheres,” Phys. Lett. A 227, 197–202 (1997).
[CrossRef]

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[CrossRef]

Weidauer, D.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).

Wolf, J. P.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Wöste, L.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Yu, J.

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

Zerull, R. H.

Zomer, S.

G. F. Crosta, S. Zomer, Y.-L. Pan, S. Holler, “Classification of single-particle two-dimensional angular optical scattering patterns and heuristic scatter reconstruction,” Opt. Eng. 42, 2689–2701 (2003).
[CrossRef]

Adv. Phys. (1)

D. R. Huffman, “Interstellar grains. The interaction of light with a small particle system,” Adv. Phys. 26, 129–230 (1977).
[CrossRef]

Aerosol Sci. Technol. (1)

R. G. Pinnick, S. C. Hill, P. Nachman, G. Videen, G. Chen, R. K. Chang, “Aerosol fluorescence spectrum analyzer for measurement of single micron-sized airborne biological particles,” Aerosol Sci. Technol. 28, 95–104 (1998).
[CrossRef]

Am. J. Phys. (1)

A. J. Cox, A. J. DeWeerd, J. Lindin, “An experiment to measure Mie and Rayleigh total scattering cross sections,” Am. J. Phys. 70, 620–625 (2002).
[CrossRef]

Analyst (1)

H. Shen, J. F. Carter, R. G. Brereton, C. Eckers, “Discrimination between tablet production methods using pyolysis-gas chromatography-mass spectrometry and pattern recognition,” Analyst 128, 287–292 (2003).
[CrossRef] [PubMed]

Appl. Opt. (5)

Eur. J. Phys. D (1)

E. Frejafon, J. Kasparian, P. Rambaldi, B. Vezin, V. Boutou, J. Yu, M. Ulbricht, D. Weidauer, B. Ottobrini, E. de Saeger, B. Krämer, T. Leisner, P. Rairoux, L. Wöste, J. P. Wolf, “Laser applications for atmospheric pollution monitoring,” Eur. J. Phys. D 4, 231–238 (1998).

J. Aerosol Sci. (1)

J. R. Bottiger, P. J. Deluca, E. W. Stuebing, D. R. Van-Reenen, “An ink jet aerosol generator,” J. Aerosol Sci. 29, Suppl. 1, 965–966 (1998).
[CrossRef]

J. Geophys. Res. (1)

P. H. Kaye, K. Alexander-Buckley, E. Hirst, S. Saunders, J. M. Clark, “A real-time monitoring system for airborne particle and shape analysis,” J. Geophys. Res. 101, 19215–19221 (1996).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

P. H. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

Nature (London) (2)

P. L. Marston, E. H. Trinh, “Hyperbolic umbilic diffraction catastrophe and rainbow scattering from spheroidal drops,” Nature (London) 312, 529–531 (1984).
[CrossRef]

M. Z. Jacobson, “Strong radiative heating due to the mixing of black carbon in atmospheric aerosols,” Nature (London) 409, 695–697 (2001).
[CrossRef]

Opt. Commun. (2)

G. Videen, D. Ngo, M. B. Hart, “Light scattering from a pair of conducting, osculating spheres,” Opt. Commun. 125, 275–287 (1996).
[CrossRef]

G. Videen, W. Sun, Q. Fu, “Light scattering from irregular tetrahedral aggregates,” Opt. Commun. 156, 5–9 (1998).
[CrossRef]

Opt. Eng. (1)

G. F. Crosta, S. Zomer, Y.-L. Pan, S. Holler, “Classification of single-particle two-dimensional angular optical scattering patterns and heuristic scatter reconstruction,” Opt. Eng. 42, 2689–2701 (2003).
[CrossRef]

Opt. Lett. (4)

Philos. Trans. R. Soc. London Ser. A (1)

D. R. Bowes, A. M. Langer, A. N. Rohl, “Nature and range of mineral dusts in the environment,” Philos. Trans. R. Soc. London Ser. A 286, 593–610 (1977).
[CrossRef]

Phys. Lett. A (1)

D. Ngo, G. Videen, R. Dalling, “Chaotic light scattering from a system of osculating, conducting spheres,” Phys. Lett. A 227, 197–202 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

D. L. Ruderman, W. Bialek, “Statistics of natural images: scaling in the woods,” Phys. Rev. Lett. 73, 814–817 (1994).
[CrossRef] [PubMed]

Space Sci. Rev. (1)

J. E. Hansen, L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974).
[CrossRef]

Other (8)

P. Sacoto, F. Lanza, H. Suarez, L. H. Garcia-Rubio, “A novel automatic dilution system for on-line particle size analysis,” in Particle Size Distribution III, T. Provder, ed. (American Chemical Society, Washington, D.C., 1998), pp. 23–29.
[CrossRef]

J. E. Jackson, A User’s Guide to Principal Components (Wiley, New York, 1991).
[CrossRef]

J. Mike, Classification Algorithms (Collins, London, 1985).

The near-backward direction was chosen for these experiments to enhance the morphological and material effects the aggregate had on the light scattering. The forward scattering is dominated by diffraction and does not offer as much useful information about particle morphology and material properties as the backward-scattering direction.

The laboratory reference frame differs from the traditional scattering reference frame in that the illuminating laser is directed along the x axis, and the z axis points up. Traditionally the laser source propagates along the z axis with the x axis directed up. The conventional geometry is typically chosen to simplify scattering calculations. A more detailed description of the laboratory reference frame is given in Ref. 4, which also includes a transformation between the two geometries.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980).

W. R. Klecka, Discriminant Analysis: Quantitative Applications in the Social Sciences Series, No. 19 (Sage, Thousand Oaks, Calif., 1980).

S. K. Kachigan, Multivariate Statistical Analysis: A Conceptual Introduction, 2nd ed. (Radius, New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Experimental setup used to record TAOS images; (b) laboratory-based coordinate system; (c) configuration of the Abbe sine condition. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Plot of h(u) for a TAOS image belonging to cluster set HCL in data set 1.

Fig. 3
Fig. 3

Plot of PC scores 1 (PC1) and 2 (PC2) for data set 1. Separation of the scores for each cluster class can be seen along the PC1 axis.

Fig. 4
Fig. 4

Increased separation of the cluster classes obtained by means of a nonlinear transformation of the DFA scores (DF1, DF2 × DF4).

Fig. 5
Fig. 5

Scanning electron micrographs of aggregates similar to those used in the experiments: (a) psl aggregate, (b) BG aggregate.

Fig. 6
Fig. 6

Representative TAOS patterns recorded from data set 1. Aggregates vary in overall diameter, but are composed of psl spheres 1.335 μm in diameter. The overall aggregate diameter is indicated with each TAOS pattern. The angular scale on the lower left pattern applies throughout the figure.

Fig. 7
Fig. 7

Representative TAOS patterns recorded from data set 2. Aggregates have a fixed mean diameter of 8.8 μm, but are comprised of primary particles whose size varies. The primary particle is indicated with each TAOS pattern. The angular scale on the lower left pattern applies to all the TAOS patterns in this figure.

Fig. 8
Fig. 8

Distribution overlap for the aggregates in data set 1.

Fig. 9
Fig. 9

Distribution overlap for the aggregates in data set 2.

Fig. 10
Fig. 10

Two-class problem. Discrimination among aggregates composed of psl beads and BG spores. Note that the DFA score is a linear combination of ten PCs.

Tables (5)

Tables Icon

Table 1 Summary of Aggregate Data for a Fixed Primary Particle Size (Data Set 1)

Tables Icon

Table 2 Summary of Data for Aggregates Containing Different Primary Particle Sizes (Data Set 2)

Tables Icon

Table 3 LDA Classification Summary for Data Set 1

Tables Icon

Table 4 LDA Classification Summary for Data Set 2

Tables Icon

Table 5 Classification Summary for the Two-Class Problem

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

0uumax=127 cycles/L.
su=1πu-π/2π/2 10 log|Gu, η|2udη, 0uumax.
σu=su-sminsmax-smin, 1uumax,
μu=10 log1u2, 1uumax
ζu=μu-μ1μmax-μmin=-logulogumax, 1uumax,
hu=σu-ζu-σ1.
X=a=1Atapa+E=T · P+E.
xij=a=1A tiapaj+eij=xˆij+eij.
Dli=αl,1ti,1+αl,2ti,2++αl,Ati,A+αl,0,
S-WV=λWV,
fi|z=12πM/2detK1/2exp-di-zcT×K-12di-zc.
Kν,w=z=1Zi=1Izxiνz-xνzxiwz-xwz1-Z,

Metrics