Abstract

This work studies two-dimensional photonic crystal beam splitters with two input ports and two output ports. The beam splitter structure consists of two orthogonally crossed line defects and one point defect in square-lattice photonic crystals. The point defect is positioned at the intersection of the line defects to divide the input power into output ports. If the position and the size of the point defect are varied, the power of two output ports can be identical. The beam splitters can be used in photonic crystal Mach-Zehnder interferometers or switches. The simulation results show that a large bandwidth of the extinction ratio larger than 20 dB can be obtained while two beams are interfered in the beam splitters. This enables photonic crystal beam splitters to be used in fiber optic communication systems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).
  2. S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
    [CrossRef] [PubMed]
  3. A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
    [CrossRef]
  4. N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
    [CrossRef] [PubMed]
  5. M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
    [CrossRef]
  6. S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
    [CrossRef]
  7. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
    [CrossRef]
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  9. A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
    [CrossRef]
  10. C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
    [CrossRef]
  11. M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
    [CrossRef]
  12. M. Bayinder, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
    [CrossRef]
  13. T. Søndergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
    [CrossRef]
  14. J. Yonekura, M. Ikeda, T. Baba, “Analysis of finite 2D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. 17, 1500–1508 (1999).
    [CrossRef]
  15. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
    [CrossRef]
  16. S. G. Johnson, C. Manolatou, S. Fan, R. Villenwuve, J. D. Joannopoulos, H. A. Haus, “Elimination of crosstalk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1988).
    [CrossRef]
  17. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
    [CrossRef]
  18. A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
    [CrossRef] [PubMed]
  19. Z. Y. Li and, K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003).
    [CrossRef]
  20. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
    [CrossRef]
  21. P. M. Johnson, A. F. Koenderink, W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102 (2002).
    [CrossRef]
  22. P. Havevi, F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
    [CrossRef]
  23. Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
    [CrossRef]
  24. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
    [CrossRef] [PubMed]

2003 (2)

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Z. Y. Li and, K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003).
[CrossRef]

2002 (7)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

P. M. Johnson, A. F. Koenderink, W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102 (2002).
[CrossRef]

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

2001 (5)

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

2000 (5)

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

M. Bayinder, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

T. Søndergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

P. Havevi, F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

1999 (3)

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

1988 (1)

Agio, N.

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Alleman, A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

Arentoft, J.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

Asakawa, K.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Baba, T.

Baughman, R. H.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

Bayinder, M.

M. Bayinder, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Bayindir, M.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

Biswas, R.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

Bouadma, N.

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

Bur, J.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Carlsson, N.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Cheng, B.

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

Chow, E.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

Chutinan, A.

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Clark, N. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

Dridi, K. H.

T. Søndergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

Fan, S.

Fleming, J. G.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Ha, Y. K.

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

Han, S.

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

Haus, H. A.

Havevi, P.

P. Havevi, F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Ho, K. M.

Z. Y. Li and, K. M. Ho, “Waveguides in three-dimensional layer-by-layer photonic crystals,” J. Opt. Soc. Am. B 20, 801–809 (2003).
[CrossRef]

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Hou, H.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

Ikeda, M.

Ikeda, N.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Imada, M.

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Inoue, K.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Jin, C.

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

Joannopoulos, J. D.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, R. Villenwuve, J. D. Joannopoulos, H. A. Haus, “Elimination of crosstalk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1988).
[CrossRef]

John, S.

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Johnson, P. M.

P. M. Johnson, A. F. Koenderink, W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102 (2002).
[CrossRef]

Johnson, S. G.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, R. Villenwuve, J. D. Joannopoulos, H. A. Haus, “Elimination of crosstalk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1988).
[CrossRef]

Kang, D.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

Kawagishi, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Kawai, N.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Kee, C. S.

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

Kim, J. E.

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

Koenderink, A. F.

P. M. Johnson, A. F. Koenderink, W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102 (2002).
[CrossRef]

Kosaka, H.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Kristensen, M.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Le Gouezigou, L.

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Li and, Z. Y.

Lim, H.

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

Lin, S. Y.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Maclennan, J. E.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

Manolatou, C.

Meng, X.

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

Nakayama, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Noda, S.

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Okano, M.

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

Ozaki, M.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Ozbay, E.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

M. Bayinder, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Park, H. Y.

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

Ramos-Mendieta, F.

P. Havevi, F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

Shimoda, Y.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

Sigalas, M. M.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Søndergaard, T.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

T. Søndergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

Soukoulis, C. M.

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

Sugimoto, Y.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Takemori, T.

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Talneau, A.

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

Temelkuran, B.

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

M. Bayinder, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Toader, O.

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

Tokushima, M.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Tomita, A.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Vawter, G. A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

Villeneuve, P. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[CrossRef]

Villenwuve, R.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

Vos, W. L.

P. M. Johnson, A. F. Koenderink, W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102 (2002).
[CrossRef]

Wendt, J. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

Yamada, H.

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Yonekura, J.

Yoshino, K.

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Zakhidov, A. A.

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

Zhang, D.

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

Zubrycki, W.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

Appl. Phys. Lett. (5)

A. Talneau, L. Le Gouezigou, N. Bouadma, C. M. Soukoulis, N. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm,” Appl. Phys. Lett. 80, 547–549 (2002).
[CrossRef]

M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952–954 (2000).
[CrossRef]

A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698–1700 (2002).
[CrossRef]

M. Bayinder, B. Temelkuran, E. Ozbay, “Photonic-crystal-based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, “Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal,” Appl. Phys. Lett. 75, 932–934 (1999).
[CrossRef]

Electron. Lett. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Single-mode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

J. Appl. Phys. (1)

C. Jin, S. Han, X. Meng, B. Cheng, D. Zhang, “Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,” J. Appl. Phys. 91, 4771–4773 (2002).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nature (3)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251–253 (1998).
[CrossRef]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2002).

S. Noda, A. Chutinan, M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi, V. S. Volkov, J. Arentoft, A. Boltasseva, T. Søndergaard, M. Kristensen, “Direct mapping of light propagation in photonic crystal waveguides,” Opt. Commun. 212, 51–55 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (4)

M. Bayindir, E. Ozbay, B. Temelkuran, M. M. Sigalas, C. M. Soukoulis, R. Biswas, K. M. Ho, “Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal wave guides,” Phys. Rev. B 63, 081107 (2001).
[CrossRef]

T. Søndergaard, K. H. Dridi, “Energy flow in photonic crystal waveguides,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

P. M. Johnson, A. F. Koenderink, W. L. Vos, “Ultrafast switching of photonic density of states in photonic crystals,” Phys. Rev. B 66, 081102 (2002).
[CrossRef]

Y. K. Ha, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, “Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities,” Phys. Rev. B 66, 075109 (2002).
[CrossRef]

Phys. Rev. Lett. (5)

D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001).
[CrossRef] [PubMed]

P. Havevi, F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85, 1875–1878 (2000).
[CrossRef]

A. Chutinan, S. John, O. Toader, “Diffractionless flow of light in all-optical microchips,” Phys. Rev. Lett. 90, 123901 (2003).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

N. Kawai, K. Inoue, N. Carlsson, N. Ikeda, Y. Sugimoto, K. Asakawa, T. Takemori, “Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal,” Phys. Rev. Lett. 86, 2289–2292 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of Mach-Zehnder interferometer and the beam splitter with two input and two output ports.

Fig. 2
Fig. 2

Energy flow (Poynting vector) in photonic crystal beam splitters with a point defect introduced in the intersection of two line defects. (a) Input light launched in input port 1. (b) Input light launched in the input port 2.

Fig. 3
Fig. 3

Relation between the radius R and the distance D as the light is launched in input ports 1 and 2, respectively.

Fig. 4
Fig. 4

Sinusoidal modulation of the output power through variation of the phase difference of the input light.

Fig. 5
Fig. 5

Extinction ratio spectra of the beam splitters.

Metrics