Abstract

We describe our preliminary studies of the use of neodymium-doped slab-shaped ceramic YAG media in the construction of compact, rugged, high-power diode-pumped solid-state lasers. A maximum extraction of more than 160 W at a 20% slope efficiency level, with a narrow transverse direction beam-parameter product of the order of 4 mm mrad-1 is experimentally obtained from an extremely simple and compact (overall dimensions 160 mm × 100 mm × 60 mm) laser head in a quasi-continuous-wave regime. Experimental data together with finite-elements method simulations indicate that power extraction can be scaled up at least to 900 W cw with this laser head geometry.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Sheps, Introduction to Diode-Pumped Solid State Lasers, Vol. TT53 of SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2002).
  2. Y. Liao, K. Du, S. Falter, J. Zhang, M. Quade, P. Loosen, R. Poprawe, “Highly efficient diode-stack, end-pumped Nd:YAG slab laser with symmetrized beam quality,” Appl. Opt. 36, 5872–5875 (1997).
    [CrossRef] [PubMed]
  3. R. J. Shine, A. J. Alfrey, R. L. Byer, “40-W cw, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser,” Opt. Lett. 20, 459–461 (1995).
    [CrossRef] [PubMed]
  4. A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [CrossRef]
  5. K. Du, N. We, J. Xu, J. Giesekus, P. Loosen, R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
    [CrossRef]
  6. J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
    [CrossRef]
  7. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
    [CrossRef]
  8. See, for instance, “Polycrystalline ceramic YAG,” Photon. Spectra 38(1), 72 (2004).
  9. J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
    [CrossRef]
  10. W. W. Rigrod, “Saturation effects in high gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
    [CrossRef]
  11. International Organization for Standardization, “Lasers and laser-related equipment: Test methods for laser beam widths, divergence angle and beam propagation ratio,” ISO Standard 11146 (International Organization for Standardization, Geneva, Switzerland, 2001).
  12. G. Mann, S. Seidel, H. Weber, “Improvement of high average power solid-state lasers: power and beam quality,” in Laser Resonators, Novel Design and Development, A. V. Kudriashov, H. Weber, eds., (SPIE, Bellingham, Wash., 1999).
  13. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 744–761.
  14. O. L. Bourn, P. E. Dyer, “A novel stable-unstable resonator for beam control of rare-gas halides lasers,” Opt. Commun. 31, 193–196 (1979).
    [CrossRef]
  15. A. Lapucci, A. Labate, F. Rossetti, S. Mascalchi, “Hybrid stable-unstable resonators for diffusion-cooled CO2 slab lasers,” Appl. Opt. 35, 3185–3192 (1996).
    [CrossRef] [PubMed]
  16. J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27, 524–526 (2002).
    [CrossRef]
  17. W. Koechner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 451–463.

2004 (2)

See, for instance, “Polycrystalline ceramic YAG,” Photon. Spectra 38(1), 72 (2004).

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

2002 (2)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

J. R. Lee, H. J. Baker, G. J. Friel, G. J. Hilton, D. R. Hall, “High-average-power Nd:YAG planar waveguide laser that is face pumped by 10 laser diode bars,” Opt. Lett. 27, 524–526 (2002).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1995 (1)

1994 (1)

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

1979 (1)

O. L. Bourn, P. E. Dyer, “A novel stable-unstable resonator for beam control of rare-gas halides lasers,” Opt. Commun. 31, 193–196 (1979).
[CrossRef]

1965 (1)

W. W. Rigrod, “Saturation effects in high gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

Alfrey, A. J.

Baker, H. J.

Bisson, J. F.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

Bourn, O. L.

O. L. Bourn, P. E. Dyer, “A novel stable-unstable resonator for beam control of rare-gas halides lasers,” Opt. Commun. 31, 193–196 (1979).
[CrossRef]

Brauch, U.

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Byer, R. L.

Du, K.

Dyer, P. E.

O. L. Bourn, P. E. Dyer, “A novel stable-unstable resonator for beam control of rare-gas halides lasers,” Opt. Commun. 31, 193–196 (1979).
[CrossRef]

Falter, S.

Feng, Y.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

Friel, G. J.

Giesekus, J.

Giesen, A.

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Hall, D. R.

Hilton, G. J.

Huegel, H.

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Kaminskii, A. A.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

Kamiskii, A. A.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 451–463.

Kudryashov, A.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

Labate, A.

Lapucci, A.

Lee, J. R.

Liao, Y.

Loosen, P.

Lu, J.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

Mann, G.

G. Mann, S. Seidel, H. Weber, “Improvement of high average power solid-state lasers: power and beam quality,” in Laser Resonators, Novel Design and Development, A. V. Kudriashov, H. Weber, eds., (SPIE, Bellingham, Wash., 1999).

Mascalchi, S.

Opower, H.

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Poprawe, R.

Prabhu, M.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

Quade, M.

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

Rossetti, F.

Seidel, S.

G. Mann, S. Seidel, H. Weber, “Improvement of high average power solid-state lasers: power and beam quality,” in Laser Resonators, Novel Design and Development, A. V. Kudriashov, H. Weber, eds., (SPIE, Bellingham, Wash., 1999).

Sheps, R.

R. Sheps, Introduction to Diode-Pumped Solid State Lasers, Vol. TT53 of SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2002).

Shine, R. J.

Shirakawa, A.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 744–761.

Takaichi, K.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

Ueda, K.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

Uematsu, T.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

Voss, A.

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

We, N.

Weber, H.

G. Mann, S. Seidel, H. Weber, “Improvement of high average power solid-state lasers: power and beam quality,” in Laser Resonators, Novel Design and Development, A. V. Kudriashov, H. Weber, eds., (SPIE, Bellingham, Wash., 1999).

Wittig, K.

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Xu, J.

Yagi, H.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

Yanagitani, T.

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

Zhang, J.

Appl. Opt. (2)

Appl. Phys. B (2)

A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

J. Lu, K. Takaichi, T. Uematsu, J. F. Bisson, Y. Feng, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “110 W ceramic Nd3+:Y3Al5O12 laser,” Appl. Phys. B 79, 25–28 (2004).
[CrossRef]

J. Alloys Compd. (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A. A. Kamiskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloys Compd. 341, 220–225 (2002).
[CrossRef]

J. Appl. Phys. (1)

W. W. Rigrod, “Saturation effects in high gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

Opt. Commun. (1)

O. L. Bourn, P. E. Dyer, “A novel stable-unstable resonator for beam control of rare-gas halides lasers,” Opt. Commun. 31, 193–196 (1979).
[CrossRef]

Opt. Lett. (3)

Photon. Spectra (1)

See, for instance, “Polycrystalline ceramic YAG,” Photon. Spectra 38(1), 72 (2004).

Other (6)

R. Sheps, Introduction to Diode-Pumped Solid State Lasers, Vol. TT53 of SPIE Tutorial Texts (SPIE, Bellingham, Wash., 2002).

International Organization for Standardization, “Lasers and laser-related equipment: Test methods for laser beam widths, divergence angle and beam propagation ratio,” ISO Standard 11146 (International Organization for Standardization, Geneva, Switzerland, 2001).

G. Mann, S. Seidel, H. Weber, “Improvement of high average power solid-state lasers: power and beam quality,” in Laser Resonators, Novel Design and Development, A. V. Kudriashov, H. Weber, eds., (SPIE, Bellingham, Wash., 1999).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), pp. 744–761.

J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, “Highly efficient lasers using polycrystalline Nd:YAG ceramics,” in XIII International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, A. Lapucci, M. Ciofini, eds., Proc. SPIE4184, 373–376 (2001).
[CrossRef]

W. Koechner, Solid State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 451–463.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawing of the diode-pumping geometry.

Fig. 2
Fig. 2

Temperature tests of the laser. Time curves of the laser output power (a) without diode cooling and for different pulse repetition rates and (b) as a function of diode case temperature. (c) Laser single-pass gain versus temperature of the diode cooling fluid.

Fig. 3
Fig. 3

Laser power extraction curves for some resonator geometries.

Fig. 4
Fig. 4

Qualitative representation of the beam patterns at several distances from the laser output.

Fig. 5
Fig. 5

Beam profiles in the x and y transverse directions obtained with a pyroelectric array (256 elements spaced by 100 μm) beam scanner.

Fig. 6
Fig. 6

Divergence measurements of the beams extracted with two different stable resonators: (a) beam width in the x transverse direction and (b) beam width in the y transverse direction.

Fig. 7
Fig. 7

(a) Temperature and (b) stress distributions calculated by FEM simulations on our slab geometry.

Tables (2)

Tables Icon

Table 1 Divergence and Beam Quality Values for the Two Transverse Directionsa

Tables Icon

Table 2 Thermomechanical Parameters of the Polycrystalline Ceramic YAG Adopted for the FEM Numerical Simulationsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

PL=IsAr1t2g0L+0.5 lnr1r2r1+r21-r1r2,
M2=πλ×BPP.
M2=Tπw22,

Metrics