Abstract

A polarization beam splitter (PBS) based on a giant-reflection to zero-order (GIRO) grating is presented. The GIRO grating is a simple binary diffraction grating with parameters chosen such that the excited optical modes in the grating interfere constructively and destructively at the respective interfaces. This interference results in high-zero-order reflection (>99%) with a high polarization-selective extinction ratio (±30 dB). The grating shows a low aspect ratio. The GIRO PBS is theoretically and experimentally shown to be an adequate PBS for use as an optical isolator in combination with a quarter-wave plate in a CO2-laser system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.
  2. L. Li and, J. A. Dobrowolsky, “High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39, 2754–2771 (2000).
    [CrossRef]
  3. J.-L. Roumiguieres, “The rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
    [CrossRef]
  4. R. Liu, B.-Z. Dong, G.-Z. Yang, B.-Y. Gu, “Optimal design of polarizing beam splitters with a birefringent substrate,” J. Opt. Soc. Am. A 14, 49–53 (1997).
    [CrossRef]
  5. R.-C. Tyan, A. A. Salvekar, H.-P. Chou, C.-C. Cheng, A. Scherer, P.-C. Sun, F. Xu, Y. Fainman, “Design, fabrication, and characterization of a form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1637 (1997).
    [CrossRef]
  6. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
    [CrossRef]
  7. H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
    [CrossRef]
  8. R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).
  9. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
    [CrossRef]
  10. T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E.-B. Kley, “Diffractive optical isolator made of high-efficiency dielectric gratings only,” Appl. Opt. 41, 3558–3566 (2002).
    [CrossRef] [PubMed]
  11. S. Chou, W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
    [CrossRef]
  12. E. Noponen, A. Vasara, J. Turunen, J. M. Miller, M. R. Taghizadeh, “Synthetic diffractive optics in the resonance domain,” J. Opt. Soc. Am. A 9, 1206–1213 (1992).
    [CrossRef]
  13. M. Kuittinen, J. Turunen, P. Vahimaa, “Subwavelength-structured elements,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie-Verlag, Berlin, 1997), pp. 303–323.
  14. K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
    [CrossRef]
  15. C. R. A. Lima, L. L. Soares, L. Cescato, A. L. Gobbi, “Reflecting polarizing beam splitter,” Opt. Lett. 22, 203–205 (1997).
    [CrossRef] [PubMed]
  16. L. L. Soares, L. Cescato, “Metallized photoresist grating as a polarizing beam splitter,” Appl. Opt. 40, 5906–5910 (2001).
    [CrossRef]
  17. P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
    [CrossRef]
  18. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  19. J. Tervo, J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings,” Opt. Lett. 25, 785–786 (2000).
    [CrossRef]
  20. J. A. Davis, J. Adachi, C. R. Fernandez-Pousa, I. Moreno, “Polarization beam splitter using polarization diffraction grating,” Opt. Lett. 26, 587–589 (2001).
    [CrossRef]
  21. L. Pajewski, R. Borghi, G. Schettini, F. Frezza, M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter,” Appl. Opt. 40, 5898–5905 (2001).
    [CrossRef]
  22. E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
    [CrossRef]
  23. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
    [CrossRef]
  24. M. R. Brozel, G. E. Stillman, eds., Properties of Gallium Arsenide (INSPEC, London, 1996).
  25. M. G. Moharam, E. B. Grann, D. A. Pommet, T. K. Gaylord, “Formulation of stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  26. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  27. L.-F. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]
  28. P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998).
    [CrossRef]

2002 (2)

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

T. Glaser, S. Schröter, H. Bartelt, H.-J. Fuchs, E.-B. Kley, “Diffractive optical isolator made of high-efficiency dielectric gratings only,” Appl. Opt. 41, 3558–3566 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

1999 (2)

F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
[CrossRef]

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

1998 (2)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998).
[CrossRef]

1997 (3)

1996 (1)

1995 (3)

1994 (1)

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

1993 (2)

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

1992 (1)

1978 (1)

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
[CrossRef]

1976 (1)

J.-L. Roumiguieres, “The rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
[CrossRef]

Adachi, J.

Baets, R.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).

Bartelt, H.

Biener, G.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

Borghi, R.

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

Cambril, E.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

Cescato, L.

Chavel, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

Cheng, C.-C.

Chou, H.-P.

Chou, S.

S. Chou, W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

Collischon, M.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Davis, J. A.

Demeulenaere, B.

R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).

Deng, W.

S. Chou, W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).

Dobrowolsky, J. A.

Dong, B.-Z.

Fainman, Y.

Fernandez-Pousa, C. R.

Frezza, F.

Fuchs, H.-J.

Gaylord, T. K.

Glaser, T.

Gobbi, A. L.

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).

Gori, F.

Grann, E. B.

Gu, B.-Y.

Haidner, H.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Hasman, E.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

Hazart, J.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

Hutfless, J.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.

Kipfer, P.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Kleiner, V.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

Kley, E.-B.

Knop, K.

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
[CrossRef]

Kuittinen, M.

M. Kuittinen, J. Turunen, P. Vahimaa, “Subwavelength-structured elements,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie-Verlag, Berlin, 1997), pp. 303–323.

Lalanne, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998).
[CrossRef]

Lang, A.

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Launois, H.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

Li, L.

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

Li, L.-F.

Li and, L.

Lima, C. R. A.

Lindolf, J.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Liu, R.

Miller, J. M.

Moharam, M. G.

Moreno, I.

Niv, A.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

Noponen, E.

Pajewski, L.

Pommet, D. A.

Roumiguieres, J.-L.

J.-L. Roumiguieres, “The rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
[CrossRef]

Salvekar, A. A.

Santarsiero, M.

Scherer, A.

Schettini, G.

Schröter, S.

Schwider, J.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Sheridan, J. T.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Soares, L. L.

Streibl, N.

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

Sun, P.-C.

Taghizadeh, M. R.

Tervo, J.

Turunen, J.

Tyan, R.-C.

Vahimaa, P.

M. Kuittinen, J. Turunen, P. Vahimaa, “Subwavelength-structured elements,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie-Verlag, Berlin, 1997), pp. 303–323.

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

Vasara, A.

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.

Xu, F.

Yang, G.-Z.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. Chou, W. Deng, “Subwavelength amorphous silicon transmission gratings and applications in polarizers and waveplates,” Appl. Phys. Lett. 67, 742–744 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[CrossRef]

J. Mod. Opt. (1)

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

J. Opt. A (1)

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, H. Launois, “A transmission polarizing beam splitter,” J. Opt. A 1, 215–219 (1999).
[CrossRef]

J. Opt. Soc. Am. A (6)

Opt. Commun. (3)

K. Knop, “Reflection grating polarizer for the infrared,” Opt. Commun. 26, 281–283 (1978).
[CrossRef]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209, 45–54 (2002).
[CrossRef]

J.-L. Roumiguieres, “The rectangular-groove grating used as an infrared polarizer,” Opt. Commun. 19, 76–78 (1976).
[CrossRef]

Opt. Eng. (2)

H. Haidner, P. Kipfer, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, M. Collischon, A. Lang, J. Hutfless, “Polarizing reflection grating beamsplitter for the 10.6-μm wavelength,” Opt. Eng. 32, 1860–1865 (1993).
[CrossRef]

P. Kipfer, M. Collischon, H. Haidner, J. T. Sheridan, J. Schwider, N. Streibl, J. Lindolf, “Infrared optical components based on a microrelief structure,” Opt. Eng. 33, 79–84 (1994).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. B (1)

P. Lalanne, “Effective properties and band structures of lamellar subwavelength crystals: plane-wave method revisited,” Phys. Rev. B 58, 9801–9807 (1998).
[CrossRef]

Other (4)

M. R. Brozel, G. E. Stillman, eds., Properties of Gallium Arsenide (INSPEC, London, 1996).

M. Kuittinen, J. Turunen, P. Vahimaa, “Subwavelength-structured elements,” in Diffractive Optics for Industrial and Commercial Applications, J. Turunen, F. Wyrowski, eds. (Akademie-Verlag, Berlin, 1997), pp. 303–323.

R. Baets, B. Demeulenaere, B. Dhoedt, S. Goeman, “Optical system with a dielectric subwavelength structure having high reflectivity and polarization selectivity,” U.S. patent6,191,890 (20February2001).

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), Chap. 24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of an optical isolator consisting of a PBS and a quarter-wave plate (QWP).

Fig. 2
Fig. 2

GIRO grating geometry and parameters.

Fig. 3
Fig. 3

(a) Effective index n eff TE of the optical modes in the grating structure for TE polarization, (b) effective index n eff TM of the optical modes in the grating structure for TM polarization.

Fig. 4
Fig. 4

Illustration of the mode profiles of the zero-order and the second-order modes for (a) TE polarization (|E y |) and (b) TM polarization (|H y |). n 2(1) = 3.27, f = 0.5, Λ/λ = 0.64.

Fig. 5
Fig. 5

GIRO grating (top) and approximation for the optical modes in the grating layer.

Fig. 6
Fig. 6

Simulations of zero-order (a) TE reflectivity and (b) TM reflectivity over a large h/λ and Λ/λ range (normal incidence, f = 0.5, n = 3.27).

Fig. 7
Fig. 7

RCWA simulations of diffraction efficiencies (a) R 0 TE and (b) R 0 TM as functions of incidence angle. f = 0.5, h/λ = 0.323, Λ/λ = 0.634, n = 3.27.

Fig. 8
Fig. 8

RCWA simulations of the diffraction efficiencies (a) R 0 TE and (b) R 0 TM as functions of fill factor f and wavelength λ. θ = α = 0, h/λ = 0.323, Λ/λ = 0.634, n = 3.27.

Fig. 9
Fig. 9

PBS based on a GIRO grating.

Fig. 10
Fig. 10

Scanning-electron microscope picture of a GIRO grating in undoped GaAs with (a) a wafer thickness of 500 μm and (b) a wafer thickness of 3 mm. (c) PBS.

Tables (2)

Tables Icon

Table 1 Comparison of GIRO Grating Designs Based on the Design Rules and on Calculations by RCWAa

Tables Icon

Table 2 PBS Based on a GIRO Grating: Comparison of Theoretical and Experimental Results

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

λ/n1<Λ<λ,
ϕe=cosγ1x0|x|fΛ/2cosγ1fΛ/2cosγ2|x|-fΛ/2-σ2γ1/σ1γ2fΛ/2|x|Λ/2×sinγ1fΛ/2sinγ2|x|-fΛ/2,
ϕo=1/γ1 sinγ1x0|x|fΛ/21/γ1signx(sinγ1fΛ/2cosγ2|x|-fΛ/2fΛ/2|x|Λ/2+σ2γ1/σ1γ2cosγ1fΛ/2sinγ2|x|-fΛ/2),
γj2=kj2-β2, j=1, 2,
σj=1TE polarization2jTM polarization,
cosγ1fΛcosγ21-fΛ-12σ2γ1σ1γ2+σ1γ2σ2γ1×sinγ1fΛsinγ21-fΛ-coskx,incΛ=0,
Φ1x=rϕ2x+ϕ0xexp-j2kneff,0h,
Φ2x=tϕ0xexp-jkneff,0h+ϕ2xexp-jkneff,2h,
R0=-Λ/2Λ/2 Φ1xdx2,
T0=-Λ/2Λ/2 Φ2xdx2.
kneff,0-neff,2h=2m+1π,
2kneff,0h=2mπ.
β=2πλ neff,0=k2-kx21/2=k2-2π/Λ21/2=2π/λn212-λ/Λ21/2.
f0.5, h/λ3/23n212+n2221/2-n2,Λ/λ2n212-n2221/2.

Metrics