Abstract

A wide-field-of-view polarization interference imaging spectrometer (WPIIS) based on a modified Savart polariscope, without moving parts, and with a narrow slit has been designed. The primary feature of this device is for use with a large angle of incidence, and the target image as well as the interferogram can be obtained at the same time in the spatial domain and are recorded by a two-dimensional CCD camera. Under compensation, the field of view of the WPIIS will extend 3–5 times as large as a common interference imaging spectrometer, and throughput will raise 1–2 orders of magnitude. The developed optics is 20 × 8 cm ø in size. The spectral resolution of the prototype system is 86.8 cm-1 between 22222.2 and 11111.1 cm-1. This system has the advantages of being static and ultracompact with wide field of view and a very high throughput. The optics system and especially the wide-field-of-view compensation principle are described, and the experimental result of the interference imaging spectrum is shown.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 19–22.
  2. M. J. Persky, “A review of space infrared Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
    [CrossRef]
  3. P. D. Hammer, F. P. J. Valero, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometer of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
    [CrossRef]
  4. L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
    [CrossRef]
  5. T. Inoue, K. Itoh, Y. Ichioka, “Fourier transform spectral imaging near the image plane,” Opt. Lett. 16, 934–936 (1991).
    [CrossRef] [PubMed]
  6. A. Ballangrud, T. Jager, G. Wang, “High resolution imaging interferometer,” in Image Understanding for Aerospace Applications, H. N. Nosr, ed., Proc. SPIE1521, 89–96 (1991).
    [CrossRef]
  7. C. L. Bennett, M. R. Carter, D. J. Fields, J. A. Hernande, “Imaging Fourier transform spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 191–200 (1993).
    [CrossRef]
  8. A. H. Vaughan, “Imaging Michelson spectrometer for Hubble space telescope,” in Precision Instrument Design, T. C. Bristow, A. E. Hathway, eds., Proc. SPIE1036, 2–14 (1988).
    [CrossRef]
  9. J. B. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
    [CrossRef] [PubMed]
  10. P. G. Lucky, K. Horton, T. Williams, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 130–141 (1993).
    [CrossRef]
  11. L. J. Otten, E. W. Butler, B. Rafert, R. G. Sellar, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
    [CrossRef]
  12. P. D. Matthew, A. K. Mohammad, “Solid-block stationary, Fourier-transform spectrometer,” Appl. Opt. 35, 84–89 (1996).
    [CrossRef]
  13. C. Zhang, B. X. Li, B. C. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 957–961 (2000).
    [CrossRef]
  14. C. Zhang, B. Xiangli, B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 1–3 (2004).
    [CrossRef]
  15. C. Zhang, B. X. Li, B. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
    [CrossRef]
  16. C. Zhang, B. Zhao, B. X. Li, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
    [CrossRef]
  17. C. Zhang, “Static polarization interference imaging spectrometer,” Chinese patent01213109.1, 27February2002.
  18. W. H. Smith, P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35, 2902–2909 (1996).
    [CrossRef] [PubMed]
  19. M. Francon, S. Mallick, Polarized Interferometer (Wiley, New York, 1971), pp. 24–25, 139–140.

2004 (1)

C. Zhang, B. Xiangli, B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 1–3 (2004).
[CrossRef]

2003 (1)

C. Zhang, B. Zhao, B. X. Li, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

2002 (1)

C. Zhang, B. X. Li, B. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

1996 (2)

1995 (2)

J. B. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
[CrossRef] [PubMed]

M. J. Persky, “A review of space infrared Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

1991 (1)

Ballangrud, A.

A. Ballangrud, T. Jager, G. Wang, “High resolution imaging interferometer,” in Image Understanding for Aerospace Applications, H. N. Nosr, ed., Proc. SPIE1521, 89–96 (1991).
[CrossRef]

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 19–22.

Bennett, C. L.

C. L. Bennett, M. R. Carter, D. J. Fields, J. A. Hernande, “Imaging Fourier transform spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 191–200 (1993).
[CrossRef]

Blatt, J. H.

Butler, E. W.

L. J. Otten, E. W. Butler, B. Rafert, R. G. Sellar, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

Carter, M. R.

C. L. Bennett, M. R. Carter, D. J. Fields, J. A. Hernande, “Imaging Fourier transform spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 191–200 (1993).
[CrossRef]

Fields, D. J.

C. L. Bennett, M. R. Carter, D. J. Fields, J. A. Hernande, “Imaging Fourier transform spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 191–200 (1993).
[CrossRef]

Francon, M.

M. Francon, S. Mallick, Polarized Interferometer (Wiley, New York, 1971), pp. 24–25, 139–140.

Hammer, P. D.

W. H. Smith, P. D. Hammer, “Digital array scanned interferometer: sensors and results,” Appl. Opt. 35, 2902–2909 (1996).
[CrossRef] [PubMed]

P. D. Hammer, F. P. J. Valero, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometer of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

Hernande, J. A.

C. L. Bennett, M. R. Carter, D. J. Fields, J. A. Hernande, “Imaging Fourier transform spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 191–200 (1993).
[CrossRef]

Horton, K.

P. G. Lucky, K. Horton, T. Williams, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 130–141 (1993).
[CrossRef]

Ichioka, Y.

Inoue, T.

Itoh, K.

Jager, T.

A. Ballangrud, T. Jager, G. Wang, “High resolution imaging interferometer,” in Image Understanding for Aerospace Applications, H. N. Nosr, ed., Proc. SPIE1521, 89–96 (1991).
[CrossRef]

Li, B. X.

C. Zhang, B. Zhao, B. X. Li, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, B. X. Li, B. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. X. Li, B. C. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 957–961 (2000).
[CrossRef]

Lucky, P. G.

P. G. Lucky, K. Horton, T. Williams, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 130–141 (1993).
[CrossRef]

Mallick, S.

M. Francon, S. Mallick, Polarized Interferometer (Wiley, New York, 1971), pp. 24–25, 139–140.

Matthew, P. D.

Mohammad, A. K.

Otten, L. J.

L. J. Otten, E. W. Butler, B. Rafert, R. G. Sellar, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

Persky, M. J.

M. J. Persky, “A review of space infrared Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

Peterson, D. L.

P. D. Hammer, F. P. J. Valero, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometer of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

Rafert, B.

L. J. Otten, E. W. Butler, B. Rafert, R. G. Sellar, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

Rafert, J. B.

Sellar, R. G.

J. B. Rafert, R. G. Sellar, J. H. Blatt, “Monolithic Fourier transform imaging spectrometer,” Appl. Opt. 34, 7228–7230 (1995).
[CrossRef] [PubMed]

L. J. Otten, E. W. Butler, B. Rafert, R. G. Sellar, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

Smith, W. H.

Valero, F. P. J.

P. D. Hammer, F. P. J. Valero, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometer of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

Vaughan, A. H.

A. H. Vaughan, “Imaging Michelson spectrometer for Hubble space telescope,” in Precision Instrument Design, T. C. Bristow, A. E. Hathway, eds., Proc. SPIE1036, 2–14 (1988).
[CrossRef]

Wang, G.

A. Ballangrud, T. Jager, G. Wang, “High resolution imaging interferometer,” in Image Understanding for Aerospace Applications, H. N. Nosr, ed., Proc. SPIE1521, 89–96 (1991).
[CrossRef]

Williams, T.

P. G. Lucky, K. Horton, T. Williams, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 130–141 (1993).
[CrossRef]

Xiangli, B.

C. Zhang, B. Xiangli, B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 1–3 (2004).
[CrossRef]

Zhang, C.

C. Zhang, B. Xiangli, B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 1–3 (2004).
[CrossRef]

C. Zhang, B. Zhao, B. X. Li, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, B. X. Li, B. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. X. Li, B. C. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 957–961 (2000).
[CrossRef]

C. Zhang, “Static polarization interference imaging spectrometer,” Chinese patent01213109.1, 27February2002.

Zhao, B.

C. Zhang, B. Xiangli, B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 1–3 (2004).
[CrossRef]

C. Zhang, B. Zhao, B. X. Li, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

C. Zhang, B. X. Li, B. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

Zhao, B. C.

C. Zhang, B. X. Li, B. C. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 957–961 (2000).
[CrossRef]

Appl. Opt. (3)

J. Opt. A: Pure Appl. Opt. (1)

C. Zhang, B. Xiangli, B. Zhao, “Permissible deviations of the polarization orientation in the polarization imaging spectrometer,” J. Opt. A: Pure Appl. Opt. 6, 1–3 (2004).
[CrossRef]

Opt. Commun. (2)

C. Zhang, B. X. Li, B. Zhao, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203, 21–26 (2002).
[CrossRef]

C. Zhang, B. Zhao, B. X. Li, “Analysis of the modulation depth affected by the polarization orientation in polarization interference imaging spectrometer,” Opt. Commun. 227, 221–225 (2003).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. J. Persky, “A review of space infrared Fourier transform spectrometer for remote sensing,” Rev. Sci. Instrum. 66, 4763–4797 (1995).
[CrossRef]

Other (11)

P. D. Hammer, F. P. J. Valero, D. L. Peterson, “An imaging interferometer for terrestrial remote sensing,” in Imaging Spectrometer of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 244–255 (1993).
[CrossRef]

L. J. Otten, E. W. Butler, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

P. G. Lucky, K. Horton, T. Williams, “SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 130–141 (1993).
[CrossRef]

L. J. Otten, E. W. Butler, B. Rafert, R. G. Sellar, “The design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environment remote sensing,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 418–424 (1995).
[CrossRef]

A. Ballangrud, T. Jager, G. Wang, “High resolution imaging interferometer,” in Image Understanding for Aerospace Applications, H. N. Nosr, ed., Proc. SPIE1521, 89–96 (1991).
[CrossRef]

C. L. Bennett, M. R. Carter, D. J. Fields, J. A. Hernande, “Imaging Fourier transform spectrometer,” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1937, 191–200 (1993).
[CrossRef]

A. H. Vaughan, “Imaging Michelson spectrometer for Hubble space telescope,” in Precision Instrument Design, T. C. Bristow, A. E. Hathway, eds., Proc. SPIE1036, 2–14 (1988).
[CrossRef]

C. Zhang, “Static polarization interference imaging spectrometer,” Chinese patent01213109.1, 27February2002.

M. Francon, S. Mallick, Polarized Interferometer (Wiley, New York, 1971), pp. 24–25, 139–140.

C. Zhang, B. X. Li, B. C. Zhao, “Static polarization interference imaging spectrometer (SPIIS),” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 957–961 (2000).
[CrossRef]

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, New York, 1972), pp. 19–22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spatially modulated polarization interference imaging spectrometer.

Fig. 2
Fig. 2

Optical layout of WPIIS based on a modified Savart polariscope.

Fig. 3
Fig. 3

Modified Savart polariscope.

Fig. 4
Fig. 4

Polychromatic light source’s interferogram and the target’s image with a large angle of incidence.

Fig. 5
Fig. 5

Monochromatic light source’s interferogram and the target’s image with a large angle of incidence.

Fig. 6
Fig. 6

Monochromatic light source’s original interferogram under field of view angle of ±10°.

Fig. 7
Fig. 7

Interferogram with the apodization by a triangle function.

Fig. 8
Fig. 8

Reconstructed spectrum of monochromatic light.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d=2tn02-ne2/n02+ne2.
Δ1=2ta2-b2/a2+b2cos ω sin i,
Δσ=σmax-σmin=11111.1 cm-1,
δσ=11111.1 cm-1/128=86.8 cm-1.
Δmax=dtgα=dxmax/f2,
Δmax=1/2δσ=1/2×86.8=0.0576 mm.
xmax=0.12×256=3.072 mm,
f2=dxmax/Δmax=1.333×3.072/0.0576=71.1 mm.
Δ=t a2-b2a2+b2cos ω+sin ω+a2-b2a2+b23/2a22cos2 ω-sin2 ωsin2 i+terms in sin4 i,
Δ=2t a2-b2a2+b2cos ω sin i.

Metrics