Abstract

Several designs for Fresnel zone plate lenses (FZPLs) to be used in conjunction with antenna-coupled infrared detectors have been fabricated and tested. The designs comprise square and circular FZPLs with different numbers of Fresnel zones working in transmissive or reflective modes designed to focus infrared energy on a square-spiral antenna connected to a microbolometer. A 163× maximum increase in response was obtained from a 15-zone circular FZPL in the transmissive mode. Sensor measurements of normalized detectivity D* resulted in a 2.67× increase with FZPLs compared with measurements made of square-spiral antennas without FZPLs. The experimental results are discussed and compared with values obtained from theoretical calculations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Wilke, W. Herrmann, F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
  2. G. Boreman, C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Tunable polarization response of planar asymmetric-spiral infrared antennas,” Opt. Lett. 23, 1912–1914 (1998).
    [CrossRef]
  3. I. Codreanu, C. Fumeaux, D. Spencer, G. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
    [CrossRef]
  4. W. A. Beck, M. S. Mirotznik, “Microstrip antenna coupling for quantum-well infrared photodetectors,” Infrared Phys. Technol. 42, 189–198 (2001).
    [CrossRef]
  5. K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
    [CrossRef]
  6. F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
    [CrossRef]
  7. C. Fumeaux, G. Boreman, W. Herrmann, F. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
    [CrossRef]
  8. J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
    [CrossRef]
  9. J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
    [CrossRef]
  10. I. Codreanu, G. Boreman, “Influence of a dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers,” Appl. Opt. 41, 1835–1840 (2002).
    [CrossRef] [PubMed]
  11. J. C. Wiltse, J. E. Garrett, “The Fresnel zone plate antenna,” Microwave J. 34, 101–114 (1991).
  12. M. A. Gouker, G. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Techn. 40, 968–977 (1992).
    [CrossRef]
  13. G. Z. Jiang, W. X. Zhang, “Theoretical and experimental studies of the Fresnel zone plate lens antenna,” Electromagnetics 19, 385–399 (1999).
    [CrossRef]
  14. H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, Norwood, Mass., 2000).
  15. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998).
  16. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
    [CrossRef]

2003

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

2002

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
[CrossRef]

I. Codreanu, G. Boreman, “Influence of a dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers,” Appl. Opt. 41, 1835–1840 (2002).
[CrossRef] [PubMed]

2001

W. A. Beck, M. S. Mirotznik, “Microstrip antenna coupling for quantum-well infrared photodetectors,” Infrared Phys. Technol. 42, 189–198 (2001).
[CrossRef]

2000

J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

1999

C. Fumeaux, G. Boreman, W. Herrmann, F. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

G. Z. Jiang, W. X. Zhang, “Theoretical and experimental studies of the Fresnel zone plate lens antenna,” Electromagnetics 19, 385–399 (1999).
[CrossRef]

I. Codreanu, C. Fumeaux, D. Spencer, G. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

1998

1997

I. Wilke, W. Herrmann, F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).

1992

M. A. Gouker, G. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Techn. 40, 968–977 (1992).
[CrossRef]

1991

J. C. Wiltse, J. E. Garrett, “The Fresnel zone plate antenna,” Microwave J. 34, 101–114 (1991).

Alda, J.

J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

Beck, W. A.

W. A. Beck, M. S. Mirotznik, “Microstrip antenna coupling for quantum-well infrared photodetectors,” Infrared Phys. Technol. 42, 189–198 (2001).
[CrossRef]

Boreman, G.

Boreman, G. D.

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Codreanu, I.

I. Codreanu, G. Boreman, “Influence of a dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers,” Appl. Opt. 41, 1835–1840 (2002).
[CrossRef] [PubMed]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

I. Codreanu, C. Fumeaux, D. Spencer, G. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Fumeaux, C.

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

I. Codreanu, C. Fumeaux, D. Spencer, G. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

C. Fumeaux, G. Boreman, W. Herrmann, F. Kneubühl, H. Rothuizen, “Spatial impulse response of lithographic infrared antennas,” Appl. Opt. 38, 37–46 (1999).
[CrossRef]

J. Alda, C. Fumeaux, I. Codreanu, J. Schaefer, G. Boreman, “A deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38, 3993–4000 (1999).
[CrossRef]

G. Boreman, C. Fumeaux, W. Herrmann, F. Kneubühl, H. Rothuizen, “Tunable polarization response of planar asymmetric-spiral infrared antennas,” Opt. Lett. 23, 1912–1914 (1998).
[CrossRef]

Garrett, J. E.

J. C. Wiltse, J. E. Garrett, “The Fresnel zone plate antenna,” Microwave J. 34, 101–114 (1991).

Gonzalez, F. J.

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
[CrossRef]

González, F. J.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Gouker, M. A.

M. A. Gouker, G. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Techn. 40, 968–977 (1992).
[CrossRef]

Gritz, M.

J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

Gritz, M. A.

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998).

Herrmann, W.

Hristov, H. D.

H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, Norwood, Mass., 2000).

Jiang, G. Z.

G. Z. Jiang, W. X. Zhang, “Theoretical and experimental studies of the Fresnel zone plate lens antenna,” Electromagnetics 19, 385–399 (1999).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Kneubühl, F.

Mirotznik, M. S.

W. A. Beck, M. S. Mirotznik, “Microstrip antenna coupling for quantum-well infrared photodetectors,” Infrared Phys. Technol. 42, 189–198 (2001).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Rothuizen, H.

Schaefer, J.

Schaich, W. L.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Smith, G. S.

M. A. Gouker, G. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Techn. 40, 968–977 (1992).
[CrossRef]

Spencer, D.

J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

I. Codreanu, C. Fumeaux, D. Spencer, G. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Wilke, I.

I. Wilke, W. Herrmann, F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).

Wiltse, J. C.

J. C. Wiltse, J. E. Garrett, “The Fresnel zone plate antenna,” Microwave J. 34, 101–114 (1991).

Zhang, W. X.

G. Z. Jiang, W. X. Zhang, “Theoretical and experimental studies of the Fresnel zone plate lens antenna,” Electromagnetics 19, 385–399 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

I. Wilke, W. Herrmann, F. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).

Electromagnetics

G. Z. Jiang, W. X. Zhang, “Theoretical and experimental studies of the Fresnel zone plate lens antenna,” Electromagnetics 19, 385–399 (1999).
[CrossRef]

Electron. Lett.

I. Codreanu, C. Fumeaux, D. Spencer, G. Boreman, “Microstrip antenna-coupled infrared detector,” Electron. Lett. 35, 2166–2167 (1999).
[CrossRef]

IEEE Trans. Microwave Theory Techn.

M. A. Gouker, G. S. Smith, “A millimeter-wave integrated-circuit antenna based on the Fresnel zone plate,” IEEE Trans. Microwave Theory Techn. 40, 968–977 (1992).
[CrossRef]

Infrared Phys. Technol.

W. A. Beck, M. S. Mirotznik, “Microstrip antenna coupling for quantum-well infrared photodetectors,” Infrared Phys. Technol. 42, 189–198 (2001).
[CrossRef]

J. Alda, C. Fumeaux, M. Gritz, D. Spencer, G. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–9 (2000).
[CrossRef]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41, 271–281 (2000).
[CrossRef]

Int. J. Infrared Millim. Waves

F. J. Gonzalez, M. A. Gritz, C. Fumeaux, G. D. Boreman, “Two dimensional array of antenna-coupled microbolometers,” Int. J. Infrared Millim. Waves 23–25, 785–797 (2002).
[CrossRef]

J. Appl. Phys.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, C. F. Quate, “Optical antennas: resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003).
[CrossRef]

Microwave J.

J. C. Wiltse, J. E. Garrett, “The Fresnel zone plate antenna,” Microwave J. 34, 101–114 (1991).

Opt. Lett.

Other

H. D. Hristov, Fresnel Zones in Wireless Links, Zone Plate Lenses and Antennas (Artech House, Norwood, Mass., 2000).

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Electron-microscope photograph of the optical spiral antenna used in this study. The shape of the spiral antenna should not be confused with the square FZPL written on the other side of the wafer.

Fig. 2
Fig. 2

FZPL in the transmissive configuration coupled to an antenna-coupled microbolometer.

Fig. 3
Fig. 3

Electron-microscope photographs of two FZPLs. At the top we present a circular FZPL with eight metalized Fresnel zones; it belongs to a series of circular FZPLs with increasing numbers of metalized zones. At the bottom we show a squared FZPL with five metalized Fresnel zones; it belongs to a series of square FZPLs with increasing numbers of metalized zones.

Fig. 4
Fig. 4

Schematic of the experimental setup used to test the infrared antenna’s response. GPIB, general purpose interface bus.

Fig. 5
Fig. 5

GF of the FZPLs fabricated with various numbers of zones for the two modes of operation (transmissive and reflective) and the two geometries: circular (circles) and square (squares). Dotted curves, input beams with uniform amplitude; the sizes of the zones are the theoretical sizes. Solid curves, results of modeling a Gaussian that corresponds to the probe beam. The zones are still dimensioned with the theoretical values. Dashed curves, simulation of a Gaussian beam incident upon a FZPL for which the dimensions of the Fresnel zones are those actually fabricated and measured. In the figure for the circular transmissive mode we have included two series of data that belong to different series of devices. The GF, represented by filled symbols, is for those devices precisely measured to include the actual dimensions of the zones into the calculations.

Tables (3)

Tables Icon

Table 1 Dimensions of the Zones for Circular and Square Geometries and for the Conditions of Fabrication Given by the Wafer Dimensions and Materialsa

Tables Icon

Table 2 Coefficients of Transmission and Reflection for the Alternate Zones Involved in the Fabricated FZPL

Tables Icon

Table 3 Values of the Ratio of D* for Two Series of Identical Infrared Antennas Attached with Circular FZPLs with Different Numbers of Opaque Zones and Working in Transmissive Mode and for Those Infrared Antennas without the FZPL

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Eantx, y= Ex, yFx, y×Kx, y, x, ydxdy,
Kx, y, x, y=121+d0dx, y, xy×1dx, y, x, y×exp-i2π ndx, y, xyλ0,
dx, y, x, y=d02+x-x2+y-y21/2.
rm=md0λ0n1/2,
xi=riπ2=0.8862ri.
t=2nn+n, r=n-nn+n,
GF=Irradiance with the FZPLIrradiance without the FZPL.

Metrics