Abstract

We have developed a model that describes thermally induced birefringence in polycrystalline ceramics that are exposed to a magnetic field. Conditions under which traditional compensation techniques (for glass and single crystals) can be effective for ceramics have been found. It is shown that a ceramic is almost equivalent to a [111]-oriented crystal if the ratio of the rod length to the grain size is ∼300 or more. In particular, residual depolarization (after the compensation techniques are applied) is inversely proportional to this ratio, which is an important consequence of the random nature of thermally induced birefringence in ceramics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Taira, A. Ikesue, K. Yoshida, “Diode-pumped Nd:YAG ceramics lasers,” in Advanced Solid-State Lasers, W. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 430–432.
  2. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
    [CrossRef]
  3. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
    [CrossRef]
  4. J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
    [CrossRef]
  5. J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
    [CrossRef]
  6. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
    [CrossRef]
  7. E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
    [CrossRef]
  8. M. A. Kagan, E. A. Khazanov, “Compensation of thermally induced birefringence in active medium made of polycrystalline ceramics,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 151–162 (2003).
    [CrossRef]
  9. M. A. Kagan, E. A. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
    [CrossRef]
  10. A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995).
    [CrossRef]
  11. A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
    [CrossRef]
  12. I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).
  13. K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
    [CrossRef]
  14. A. Ikesue, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 Japan (personal communication, 2002).
  15. E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
    [CrossRef]
  16. E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
    [CrossRef]
  17. L. Ainola, H. Aben, “Transformation equations in polarization optics of inhomogeneous birefringent media,” J. Opt. Soc. Am. A 18, 2164–2170 (2001).
    [CrossRef]
  18. M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).
  19. A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka, Minsk, 1988).
  20. E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
    [CrossRef]
  21. N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
    [CrossRef]
  22. E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electronics 31, 351–356 (2001).
    [CrossRef]
  23. E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
    [CrossRef] [PubMed]
  24. E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
    [CrossRef] [PubMed]
  25. L. D. Landau, E. M. Lifshits, Theoretical Physics: Mechanics (Nauka, Moscow, 1973).
  26. A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, USSR, 1986).
  27. L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
    [CrossRef]
  28. E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).
  29. S. M. Ritov, Y. A. Kravtsov, B. T. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).

2003 (1)

M. A. Kagan, E. A. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

2002 (6)

2001 (4)

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electronics 31, 351–356 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

L. Ainola, H. Aben, “Transformation equations in polarization optics of inhomogeneous birefringent media,” J. Opt. Soc. Am. A 18, 2164–2170 (2001).
[CrossRef]

2000 (3)

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

1999 (2)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

1995 (3)

A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

1979 (1)

L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

1969 (1)

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

A. Kagan, M.

M. A. Kagan, E. A. Khazanov, “Compensation of thermally induced birefringence in active medium made of polycrystalline ceramics,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 151–162 (2003).
[CrossRef]

Aben, H.

Ainola, L.

Amin, R.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Anastasiyev, A. A.

Andreev, N.

Andreev, N. F.

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

Babin, A.

Chen, F. S.

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

D. Landau, L.

L. D. Landau, E. M. Lifshits, Theoretical Physics: Mechanics (Nauka, Moscow, 1973).

Furusato, I.

A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995).
[CrossRef]

Ikesue, A.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

A. Ikesue, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 Japan (personal communication, 2002).

T. Taira, A. Ikesue, K. Yoshida, “Diode-pumped Nd:YAG ceramics lasers,” in Advanced Solid-State Lasers, W. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 430–432.

Ivanov, I.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Kagan, M. A.

M. A. Kagan, E. A. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

Kamata, K.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995).
[CrossRef]

Kaminskii, A. A.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Katin, E. V.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

Khazanov, E.

Khazanov, E. A.

M. A. Kagan, E. A. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

E. A. Khazanov, “Thermally induced birefringence in Nd:YAG ceramics,” Opt. Lett. 27, 716–718 (2002).
[CrossRef]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electronics 31, 351–356 (2001).
[CrossRef]

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

M. A. Kagan, E. A. Khazanov, “Compensation of thermally induced birefringence in active medium made of polycrystalline ceramics,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 151–162 (2003).
[CrossRef]

Kinoshita, T.

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

Kiselev, A.

Kravtsov, Y. A.

S. M. Ritov, Y. A. Kravtsov, B. T. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).

Kudryashov, A.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Kulagin, O. V.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Kurimura, S.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Lifshits, E. M.

L. D. Landau, E. M. Lifshits, Theoretical Physics: Mechanics (Nauka, Moscow, 1973).

Lu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Lu, J. H.

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Lu, J. R.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Lupei, V.

Mal’shakov, A.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Mehl, O.

Mezenov, A. V.

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, USSR, 1986).

Misawa, K.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

Mueller, G.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Murai, T.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Palashov, O.

Palashov, O. V.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. A. Khazanov, A. A. Anastasiyev, N. F. Andreev, A. Voytovich, O. V. Palashov, “Compensation of birefringence in active elements with a novel Faraday mirror operating at high average power,” Appl. Opt. 41, 2947–2954 (2002).
[CrossRef] [PubMed]

Potemkin, A. K.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

Poteomkin, A.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Prabhu, M.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Reitze, D.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

E. Khazanov, N. Andreev, A. Babin, A. Kiselev, O. Palashov, D. Reitze, “Suppression of self-induced depolarization of high-power laser radiation in glass-based Faraday isolators,” J. Opt. Soc. Am. B 17, 99–102 (2000).
[CrossRef]

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Reitze, D. H.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Ritov, S. M.

S. M. Ritov, Y. A. Kravtsov, B. T. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).

Sato, Y.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

Sergeev, A.

E. Khazanov, N. Andreev, O. Palashov, A. Poteomkin, A. Sergeev, O. Mehl, D. Reitze, “Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power,” Appl. Opt. 41, 483–492 (2002).
[CrossRef] [PubMed]

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Sergeev, A. M.

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

Severikov, V. N.

A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka, Minsk, 1988).

Shaykin, A.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Shirakawa, A.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

Shoji, I.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

Soms, L. N.

L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, USSR, 1986).

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Stepanov, A. I.

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, USSR, 1986).

Tabor, M. J.

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

Taira, T.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

T. Taira, A. Ikesue, K. Yoshida, “Diode-pumped Nd:YAG ceramics lasers,” in Advanced Solid-State Lasers, W. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 430–432.

Takaichi, K.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Tanner, D.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Tanner, D. B.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

Tatarskii, B. T.

S. M. Ritov, Y. A. Kravtsov, B. T. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).

Ueda, K.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Uematsu, T.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Voytovich, A.

Voytovich, A. P.

A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka, Minsk, 1988).

Xu, J.

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yagi, H.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yanagitani, T.

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Yoshida, K.

I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, K. Yoshida, “Thermal-birefringence-induced depolarization in Nd:YAG ceramics,” Opt. Lett. 27, 234–236 (2002).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

T. Taira, A. Ikesue, K. Yoshida, “Diode-pumped Nd:YAG ceramics lasers,” in Advanced Solid-State Lasers, W. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 430–432.

Yoshida, S.

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

Zelenogorsky, V.

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

Appl. Opt. (2)

Appl. Phys. (1)

M. J. Tabor, F. S. Chen, “Electromagnetic propagation through materials possessing both Faraday rotation and birefringence: experiments with ytterbium orthoferrite,” Appl. Phys. 40, 2760–2765 (1969).

Appl. Phys. B (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminskii, H. Yagi, T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramic,” Appl. Phys. B 71, 469–473 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics,” Appl. Phys. Lett. 77, 939–941 (2000).
[CrossRef]

J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, A. Kudryashov, “72-W Nd:Y3Al5O12 ceramic laser,” Appl. Phys. Lett. 78, 3586–3588 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. A. Khazanov, O. V. Kulagin, S. Yoshida, D. Tanner, D. Reitze, “Investigation of self-induced depolarization of laser radiation in terbium gallium garnet,” IEEE J. Quantum Electron. 35, 1116–1122 (1999).
[CrossRef]

J. Am. Ceram. Soc. (3)

A. Ikesue, I. Furusato, K. Kamata, “Fabrication of polycrystalline, transparent YAG ceramics by a solid-state reaction method,” J. Am. Ceram. Soc. 78, 225–228 (1995).
[CrossRef]

A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, “Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers,” J. Am. Ceram. Soc. 78, 1033–1040 (1995).
[CrossRef]

I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida, “Optical properties and laser characteristics of highly Nd3+-doped Y3Al5 O12 ceramics,” J. Am. Ceram. Soc. 79, 1921–1941 (1995).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. Part 2 (2)

K. Takaichi, J. R. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics—a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Jpn. J. Appl. Phys. Part 2 41, L96–L98 (2002).
[CrossRef]

J. R. Lu, J. H. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, “Nd3+:Y2O3 ceramic laser,” Jpn. J. Appl. Phys. Part 2 40, L1277–L1279 (2001).
[CrossRef]

Opt. Lett. (2)

Quantum Electron. (3)

E. A. Khazanov, “Compensation of thermally induced polarization distortions in Faraday isolators,” Quantum Electron. 29, 59–64 (1999).
[CrossRef]

N. F. Andreev, E. V. Katin, O. V. Palashov, A. K. Potemkin, D. Reitze, A. M. Sergeev, E. A. Khazanov, “The use of crystalline quartz for compensation for thermally indused depolarization in Faraday isolators,” Quantum Electron. 32, 91–94 (2002).
[CrossRef]

M. A. Kagan, E. A. Khazanov, “Features of compensation of thermally induced depolarization in polycrystalline Nd:YAG ceramic,” Quantum Electron. 33, 876–882 (2003).
[CrossRef]

Quantum Electronics (1)

E. A. Khazanov, “A new Faraday rotator for high average power lasers,” Quantum Electronics 31, 351–356 (2001).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. N. Soms, A. A. Tarasov, “Thermal deformation in color-center laser active elements. 1. Theory,” Sov. J. Quantum Electron. 9, 1506–1508 (1979).
[CrossRef]

Other (8)

E. Khazanov, N. Andreev, A. Mal’shakov, O. Palashov, A. Poteomkin, A. Sergeev, A. Shaykin, V. Zelenogorsky, I. Ivanov, R. Amin, G. Mueller, D. B. Tanner, D. H. Reitze, “Compensation of thermally induced modal distortions in Faraday isolators,” IEEE J. Quantum Electron. (to be published).

S. M. Ritov, Y. A. Kravtsov, B. T. Tatarskii, Introduction to Statistical Radiophysics (Nauka, Moscow, 1978).

A. P. Voytovich, V. N. Severikov, Lasers with Anisotropic Resonators (Nauka, Minsk, 1988).

L. D. Landau, E. M. Lifshits, Theoretical Physics: Mechanics (Nauka, Moscow, 1973).

A. V. Mezenov, L. N. Soms, A. I. Stepanov, Thermooptics of Solid-State Lasers (Mashinostroenie, Leningrad, USSR, 1986).

M. A. Kagan, E. A. Khazanov, “Compensation of thermally induced birefringence in active medium made of polycrystalline ceramics,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 151–162 (2003).
[CrossRef]

T. Taira, A. Ikesue, K. Yoshida, “Diode-pumped Nd:YAG ceramics lasers,” in Advanced Solid-State Lasers, W. Bosenberg, M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), pp. 430–432.

A. Ikesue, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya 456-8587 Japan (personal communication, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Designs of Faraday isolators: (a) without compensation; (b) with a half-wave plate (P) (Refs. 15 and 20); (c) with reciprocal rotator (R) by 3π/8 (Refs. 15 and 20); and (d) with a uniaxial crystal (UC) (Ref. 21). Designs of Faraday mirrors: (e) without compensation and (f) with a reciprocal rotator (R) by π/2.22,23 Angles above the Faraday elements indicate the angles of polarization-plane rotation. p and N stand for power and number of grains, respectively, for the entire beam path.

Fig. 2
Fig. 2

Coordinate frames xyz and x′ y′ z′.

Fig. 3
Fig. 3

Dependence of γ on p Faraday isolators and mirrors made from TGG ceramics for N = 30 (squares), N = 100 (circles), and N = 300 (triangles): (a) on the design of the Faraday isolator shown in Fig. 1(b), (b) on the design of the Faraday isolator shown in Fig. 1(c), (c) on the design of the Faraday isolator shown in Fig. 1(d), and (d) on the design of the Faraday mirror shown in Fig. 1(f). Dashed curves in (a)–(c) show the dependence on the design of the Faraday isolator without compensation shown in Fig. 1(a), and the dashed curve in (d) shows the dependence on the design of the Faraday mirror without compensation shown in Fig. 1(e).

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

e=Ue0|e|=|e0|=1.
Γ=|e*e|2=e0*U*ee*Ue0.
e0=cos φ-sin φ,e0*=cos φ, -sin φ,e=sin φcos φ,e*=sin φ, cos φ.
Γ=e0*Ge0,
G=U*MU, M=ee*=sin2 φsin φ cos φsin φ cos φcos2 φ.
U=Qδl, δc, θ=cosδ2+i δlδsinδ2cos 2θ-δcδsinδ2-i δlδsinδ2sin 2θδcδsinδ2-i δlδsinδ2sin 2θcosδ2-i δlδsinδ2cos 2θ,
δ2=δl2+δc2,
T=QNQN-1Q2Q1.
Γ=e0*Ge0.
Ga=T*MT=Q1*Q2*QN-1*QN*MQNQN-1Q2Q1.
Ua=Q0, -π/2, 0TΔc=π/2.
Ub=T2Δc=-π/4Qπ, 0, π/8-ϕT1Δc=π/4.
Uc=Q0, 3π/4, 0T2Δc=π/4×Q0, 3π/4, 0T1Δc=π/4.
Ud=Q-Δl, -Δc, 0TΔc=π/2.
Ue=TΔc=πQ0, π, 0.
Uf=Q0, π, 0T3Δc=π/6Q0, π, 0T2Δc=π/6Q0, -π, 0T1Δc=π/4Q0, π, 0T3Δc=π/6T2*Δc=-π/6T1Δc=π/4.
tan 2θ=b˜/ã, δ=-pNlglgãcos 2θ,
ã=ξh+ξ-18gσ1+hτ1,b˜=ξ-18gσ2+hτ2,σ1=sin2 β{[8 cos2 β-sin2 2α3+cos 2β]cos 2Φ+2 cos β sin 4α sin 2Φ},σ2=sin2 β{[8 cos2 β-sin2 2α3+cos 2β]sin 2Φ-2 cos β sin 4α cos 2Φ},τ1=-4 cos2 β-sin4 β4-sin2 α-cos 4Φ[sin4 β4-sin2 2α+4 cos2 β cos 4α]-sin 4Φ×sin 4α cos β3+cos 2β,τ2=sin 4α cos β3+cos 2βcos 4Φ-[sin4 β4-sin2 2α+4 cos2 β cos 4α]×sin 4Φ,p=PhλaTκn0341+ν1-νp11-p12,ξ=2p44p11-p12,Φ=Φ-φ.
hu=1u0udz 0z fxdx,gu=1R0Rdz 0z fxdx-uRdzz0z fxdx,
f=Θ1-u, h=u/2, g=u-1/2,
f=exp-u, h=1+exp-u-1u, g=1+exp-R-1R+lnuR+Eiu-EiR,
γ=1πR0202πdφ 0R0 Γr, φfr2r02rdr=12π02πdφ 01 Γu, φfudu.
σllg  1N,
Flg, α, β, Φ1, lg, α, β, Φ2,, lg, α, β, ΦN=i=1N flg, α, β, Φi,
UU*=σ0=1001,
U=α0+iα1α2+iα3-α2+iα3α0-iα1,
σ1=i00-i, σ2=01-10, σ3=0ii0
U=α0σ0+α1σ1+α2σ2+α3σ3.
σi2=-σ0, σiσj=-σiσj=σk,
I2=J2=K2=-1,IJ=-JI=K,JK=-KJ=I, KI=-IK=J.
σ01, σ1I, σ2J, σ3K,
G0=QN*QN-1*Q2*Q1*MQ1|1Q2|2|N-2×QN-1|N-1QN|N,
M=[1+iI cos(2φ)-iK sin(2φ)]/2,
Qk=Q(δlk, δck, θk)=cos(δk/2)+I sin(δk/2)cos(2θk)δlk/δk-J sin(δk/2)δck/δk-K sin(δk/2)sin(2θk)δlk/δk,
|k0d(lg)k-ππdαk-π/2π/2dβk-ππdΦk{()×f[(lg)k, αk, βk, Φk]}.
xk+1=xk,yk+1zk+1wk+1=S(Xk+1, Yk+1, Zk+1, Wk+1)ykzkwk,
SX, Y, Z, W=X2+Y2-Z2-W22YZ+XW2YW-XZ2YX-XWX2-Y2+Z2-W22ZW+XY2YW+XZ2ZW-XYX2-Y2-Z2+W2.
Sδl, δc, θ=1+sin δ-tanδ/21-δl/δ2 cos22θ-δl/δsin2θ1+δc/δtanδ/2cot2θδl/δsin2θ1-δc/δtanδ/2cot2θ-δl/δ2 tanδ/2-δc/δ-δl/δ2 tanδ/2sin4θ-δl/δcos2θ1-δc/δtanδ/2tan2θ×δc/δ-δl/δ2 tanδ/2sin4θδl/δcos2θ1+δc/δtanδ/2tan2θ-tanδ/21-δl/δ2 sin22θ.
St=1/Δ2Δl2+Δc2 cos ΔΔlΔc/Δ21-cos ΔΔc/Δsin ΔΔlΔc/Δ21-cos Δ1/Δ2Δc2+Δl2 cos Δ-Δl/Δsin Δ-Δc/Δsin ΔΔl/ΔsinΔcos Δ-p24NS1,
S1=A+Bcos Δ+B-Asin Δ/Δ0A+BsinΔ02A+B0-A+Bsin Δ0A+BcosΔ-B-Asin Δ/Δ,Δ2=Δl2+Δc2, Δl=pa, a=ã=Xh, X=75ξ+53128,A=ã2-a2=1+d2h2/21622665ξ2+31470ξ+11401+B-Xh2,B=b˜2=1+d2ξ-122171060g2+9865h2, d=σllg.
Γa=1-cos ΔcΔl24Δc2+p28NA+B,
Γb=Δl4Δc2sin2Δc/22+sin Δc-Δc2Δc2+p28NA+B,
Γc=Δl44Δc4Δc-sin Δc2+p28NA+B,
Γd=p28NA+B,
Γe=1-cos ΔcΔl24Δc2+p28NA+B,
Γf=916Δl4Δc4Δc-1sin Δc2+p28NA+B.
γaflat=0.00634p2+0.00275p2/N, γaGauss=0.01043p2+0.00933p2/N,
γbflat=0.00023p4+0.00275p2/N, γbGauss=0.00076p4+0.00933p2/N,
γcflat=0.00003p4+0.00275p2/N, γcGauss=0.00152p2+0.00933p2/N,
γdflat=0.00275p2/N, γdGauss=0.00091p2+0.00933p2/N,
γeflat=0.00317p2+0.00550p2/N, γeGauss=0.0209p2+0.01866p2/N,
γfflat=0.00004p4+0.00550p2/N, γfGauss=0.00013p4+0.01866p2/N.
ξeff-1=ξ-115/162.
DΓ=Γ2-Γ2p2/N,
p2NA+B=DΔl=p2Nξ-125211106g2+1003h2,
γa=γb=γc=γd=γe/2=γf/2.

Metrics