Abstract

We demonstrate that a laser beam converging from a specific transverse mode is a bottle beam, as described in J. Opt. Soc. Am. B 20, 1220 (2003). To our knowledge, this is the first time that a bottle beam has been generated directly from a laser. By calculating the radiation forces on a dielectric Rayleigh sphere in the bottle beam, we show that the single beam can trap high-refractive-index particles at the multiple axial sites of intensity maxima, and it can confine low-index particles on a transverse plane within the bottle regions. Such a novel laser beam may have other applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 10, 288–290 (1986).
    [CrossRef]
  2. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
    [CrossRef]
  3. R. Ozeri, L. Khaykovich, N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
    [CrossRef]
  4. J. Arlt, M. J. Padgett, “Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam,” Opt. Lett. 25, 191–193 (2000).
    [CrossRef]
  5. C. H. Chen, P. T. Tai, M. D. Wei, W. F. Hsieh, “Multibeam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
    [CrossRef]
  6. G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
    [CrossRef]
  7. J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
    [CrossRef]
  8. Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
    [CrossRef]
  9. Y. K. Nahmias, D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
    [CrossRef]
  10. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  11. R. Omori, T. Kobayashi, A. Suzuki, “Observation of single-beam gradient-force optical trap for dielectric particles in air,” Opt. Lett. 22, 816–818 (1997).
    [CrossRef] [PubMed]
  12. L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
    [CrossRef]

2003 (1)

2002 (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Y. K. Nahmias, D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

2000 (1)

1999 (1)

R. Ozeri, L. Khaykovich, N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

1997 (1)

1996 (1)

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

1989 (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

1988 (1)

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[CrossRef]

1986 (1)

1979 (1)

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

Arlt, J.

Asakura, T.

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Ashkin, A.

Barton, J. P.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

Bjorkholm, J. E.

Chen, C. H.

Chu, S.

Davidson, N.

R. Ozeri, L. Khaykovich, N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Davis, L. W.

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

Dholakia, K.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Dziedzic, J. M.

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Gouesbet, G.

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[CrossRef]

Grehan, G.

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[CrossRef]

Harada, Y.

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Hsieh, W. F.

Khaykovich, L.

R. Ozeri, L. Khaykovich, N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Kobayashi, T.

Maheu, B.

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[CrossRef]

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Nahmias, Y. K.

Y. K. Nahmias, D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

Odde, D. J.

Y. K. Nahmias, D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

Omori, R.

Ozeri, R.

R. Ozeri, L. Khaykovich, N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Padgett, M. J.

Schaub, S. A.

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Suzuki, A.

Tai, P. T.

Wei, M. D.

IEEE J. Quantum Electron. (1)

Y. K. Nahmias, D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

J. Appl. Phys. (1)

J. P. Barton, D. R. Alexander, S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys. 66, 4594–4602 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

C. H. Chen, P. T. Tai, M. D. Wei, W. F. Hsieh, “Multibeam-waist modes in an end-pumped Nd:YVO4 laser,” J. Opt. Soc. Am. B 20, 1220–1226 (2003).
[CrossRef]

G. Gouesbet, B. Maheu, G. Grehan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. B 5, 1427–1443 (1988).
[CrossRef]

Nature (London) (1)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, “Simultaneous manipulation in multiple planes using a self-reconstructing light beam,” Nature (London) 419, 145–147 (2002).
[CrossRef]

Opt. Commun. (1)

Y. Harada, T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

L. W. Davis, “Theory of electromagnetic beams,” Phys. Rev. A 19, 1177–1179 (1979).
[CrossRef]

R. Ozeri, L. Khaykovich, N. Davidson, “Long spin relaxation times in a single-beam blue-detuned optical trap,” Phys. Rev. A 59, R1750–R1753 (1999).
[CrossRef]

Other (1)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Numerical profile variation of the MBW mode. (b) Mode patterns at the flat mirror end (solid curve with the bottom and left scale) and in the far field (dashed curve with the top and the right scale) together with experimental photographs. The speckles in the photographs are due to screen reflection. The fitted coefficients for the solid curve are η0 = 1, η3 = 0.82, η6 = 0.66, η9 = 0.41, η12 = 0.35, η15 = 0.22, η18 = 0.08, η21 = 0.08.

Fig. 2
Fig. 2

Bottle beam condensed from the MBW mode through a convergent lens with a focal length of 52 mm at a distance of 105 mm from the output coupler. The three high-intensity extrema are at Z′ = 68, 76, 100 mm, and the bottle centers are at Z′ = 72, 84 mm. The calculated beam profiles point to the experimental photographs.

Fig. 3
Fig. 3

(a) Experimental result of an optical bottle with a 7% contrast. (b) Simulated bottle with the superimposition of the LG00 and LG30 modes with equal mode weighting. (c) Two transverse profiles of the optical bottles in mode calculation with an aperture radius of 350 μm and a pump radius of, solid curve, 30 μm and, dashed curve, 15 μm.

Fig. 4
Fig. 4

(a) Fscat and Fgrad,z as a function of the propagation distance. (b) Fgrad,ρ versus ρ at the positions of the intensity maxima. (c) Fgrad,z versus ρ at the positions of maximal negative F grad,z (ρ = 0) near the two intensity maxima.

Fig. 5
Fig. 5

Vector plots of the total radiation force. The vectors are lengthened 10 times to Z′ = 10.9–11.2 mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Er, t=Rep Ep0rexp-iωti=ReEBBLrexp-iωti,
Hr, tk×Er, tZ=n2ε0c ReEBBLrexp-iωtj=ReHBBLrexp-iωtj,
IrSr, tT=12ReEBBLr×HBBL*r=n2ε0c2 |EBBLr|2k,
pr, t=4πn22ε0a3nr2-1nr2+2Er, t,
Fscatr=n2c CprIrk=n2c83 πk4a6nr2-1nr2+22Irk,
Fgradr=pr, t · Er, tT=2πn2a3cnr2-1nr2+2Irk.
Ep0ρ, z=Ap0ρ, zexp-ρ2wz2×expi kρ22Rzexpikz-2p+1tan-1zzR,
Ap0ρ, z=E0wcwz Lp02ρ2wz2
Fgrad,zZmaxFscatZmax>1,

Metrics