Abstract

We report the design and fabrication of a chirped switchable reflective grating (CSRG) recorded in a holographic polymer-dispersed liquid-crystal material. This CSRG is a spatial wavelength-selective flattener in a free-space dynamic gain equalizer for use in wavelength-division multiplexing (WDM) networks. Prelimenary experimental results show that this device permits the management of the spectral power of a WDM stream with an attenuation range of 6 dB. The polarization-dependent loss introduced by the CSRG is shown to be less than 0.1 dB.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Berthold, “WDM in the metropolitan: past present and future,” presented at the 28th European Conference on Optical Communication (ECOC), Copenhagen, Denmark, 8–12 September 2002.
  2. J. Ford, J. A. Walker, “Dynamic spectral power equalisation using micro-opto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998).
    [CrossRef]
  3. A. R. Ranalli, B. A. Scott, J. P. Kondis, “Liquid crystal-based wavelength selectable cross-connect,” in Proceedings of the 25th European Conference on Optical Communication (ECOC 1999) (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), Vol. 1, pp. 68–69.
  4. T. Loukina, R. Chevallier, J. L. de Bougrenet de la Tocnaye, M. Barge, “Dynamic spectral equalizer using free-space dispersive optics combined with a polymer-dispersed liquid-crystal spatial light attenuator,” J. Lightwave Technol. 21, 2067–2073 (2003).
    [CrossRef]
  5. L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).
  6. L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.
  7. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, “Electrically switchable volume grating in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
    [CrossRef]
  8. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  9. M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002)
    [CrossRef]
  10. E. B. Li and, A. K. Tieu, “Spherical Gaussian beam model for prediction of three-dimensional fringe patterns in a laser Doppler anemometer measuring volume,” Opt. Lasers Eng. 30, 287–297 (1998).
    [CrossRef]
  11. J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
    [CrossRef]
  12. R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
    [CrossRef]
  13. R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B, 19, 3004–3012 (2002).
    [CrossRef]

2003 (1)

2002 (4)

M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002)
[CrossRef]

J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

R. L. Sutherland, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. I. Theoretical model,” J. Opt. Soc. Am. B 19, 2995–3003 (2002).
[CrossRef]

R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, S. Chandra, C. K. Shepherd, D. M. Brandelik, S. A. Siwecki, T. J. Bunning, “Polarization and switching properties of holographic polymer-dispersed liquid-crystal gratings. II. Experimental investigations,” J. Opt. Soc. Am. B, 19, 3004–3012 (2002).
[CrossRef]

1998 (2)

J. Ford, J. A. Walker, “Dynamic spectral power equalisation using micro-opto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998).
[CrossRef]

E. B. Li and, A. K. Tieu, “Spherical Gaussian beam model for prediction of three-dimensional fringe patterns in a laser Doppler anemometer measuring volume,” Opt. Lasers Eng. 30, 287–297 (1998).
[CrossRef]

1994 (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, “Electrically switchable volume grating in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Ashmead, A.

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

Barge, M.

Berthold, J.

J. Berthold, “WDM in the metropolitan: past present and future,” presented at the 28th European Conference on Optical Communication (ECOC), Copenhagen, Denmark, 8–12 September 2002.

Brandelik, D. M.

Bunning, T. J.

Chandra, S.

Chen, Y. M.

L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.

Chevallier, R.

Crawford, G. P.

M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002)
[CrossRef]

J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

de Bougrenet de la Tocnaye, J. L.

de Sarkar, M.

J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002)
[CrossRef]

Domash, L.

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

Domash, L. H.

L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.

Ford, J.

J. Ford, J. A. Walker, “Dynamic spectral power equalisation using micro-opto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998).
[CrossRef]

Haugsjaa, P.

L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kondis, J. P.

A. R. Ranalli, B. A. Scott, J. P. Kondis, “Liquid crystal-based wavelength selectable cross-connect,” in Proceedings of the 25th European Conference on Optical Communication (ECOC 1999) (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), Vol. 1, pp. 68–69.

Li and, E. B.

E. B. Li and, A. K. Tieu, “Spherical Gaussian beam model for prediction of three-dimensional fringe patterns in a laser Doppler anemometer measuring volume,” Opt. Lasers Eng. 30, 287–297 (1998).
[CrossRef]

Loukina, T.

Natarajan, L. V.

Oren, M.

L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.

Popovich, M.

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

Qi, J.

M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002)
[CrossRef]

J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

Ranalli, A. R.

A. R. Ranalli, B. A. Scott, J. P. Kondis, “Liquid crystal-based wavelength selectable cross-connect,” in Proceedings of the 25th European Conference on Optical Communication (ECOC 1999) (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), Vol. 1, pp. 68–69.

Scott, B. A.

A. R. Ranalli, B. A. Scott, J. P. Kondis, “Liquid crystal-based wavelength selectable cross-connect,” in Proceedings of the 25th European Conference on Optical Communication (ECOC 1999) (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), Vol. 1, pp. 68–69.

Shepherd, C. K.

Siwecki, S. A.

Smith, R.

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

Storey, J.

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

Sutherland, R. L.

Tieu, A. K.

E. B. Li and, A. K. Tieu, “Spherical Gaussian beam model for prediction of three-dimensional fringe patterns in a laser Doppler anemometer measuring volume,” Opt. Lasers Eng. 30, 287–297 (1998).
[CrossRef]

Tondiglia, V. P.

Walker, J. A.

J. Ford, J. A. Walker, “Dynamic spectral power equalisation using micro-opto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998).
[CrossRef]

Warren, G. T.

J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, “Electrically switchable volume grating in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Ford, J. A. Walker, “Dynamic spectral power equalisation using micro-opto-mechanics,” IEEE Photon. Technol. Lett. 10, 1440–1442 (1998).
[CrossRef]

J. Appl. Phys. (1)

J. Qi, M. de Sarkar, G. T. Warren, G. P. Crawford, “In situ shrinkage measurement of holographic polymer dispersed liquid crystals,” J. Appl. Phys. 91, 4795–4800 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Lasers Eng. (1)

E. B. Li and, A. K. Tieu, “Spherical Gaussian beam model for prediction of three-dimensional fringe patterns in a laser Doppler anemometer measuring volume,” Opt. Lasers Eng. 30, 287–297 (1998).
[CrossRef]

Polymer (1)

M. de Sarkar, J. Qi, G. P. Crawford, “Influence of partial matrix fluorination on morphology and performance of HPDLC transmission gratings,” Polymer 43, 7335–7344 (2002)
[CrossRef]

Other (4)

L. Domash, G. P. Crawford, A. Ashmead, R. Smith, M. Popovich, J. Storey, “Holographic PDLC for photonic applications,” in Liquid Crystals IV, I.-C. Khoo, ed., Proc. SPIE4107, 254–256 (1997).

L. H. Domash, Y. M. Chen, P. Haugsjaa, M. Oren, “Electronically switchable waveguide Bragg gratings for WDM routing,” In 1997 Digest of the IEEE/LEOS Summer Topical Meetings—WDM Components Technology (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1997), pp. 34–35.

J. Berthold, “WDM in the metropolitan: past present and future,” presented at the 28th European Conference on Optical Communication (ECOC), Copenhagen, Denmark, 8–12 September 2002.

A. R. Ranalli, B. A. Scott, J. P. Kondis, “Liquid crystal-based wavelength selectable cross-connect,” in Proceedings of the 25th European Conference on Optical Communication (ECOC 1999) (Institute of Electrical and Electronics Engineers, Piscataway, N. J., 1999), Vol. 1, pp. 68–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scanning-electron microscope photographs of the polymer matrix of a CSRG clearly showing the planes that are rich in liquid-crystal droplets.

Fig. 2
Fig. 2

Illustration of the spectral power-management device that uses a CSRG: F, Fin, Fout, optical fibers; DOE, dispersive optical element, f 1 (f 2), the focal length of the first (second) lens.

Fig. 3
Fig. 3

Illustration of the CSRG with five impinging WDM wavelengths.

Fig. 4
Fig. 4

Experimental setup for exposing the samples to a chirped interference pattern.

Fig. 5
Fig. 5

Geometrical illustration of the interference between two diverging beams giving rise to a chirped diffraction structure.

Fig. 6
Fig. 6

Setup for fiber optic characterization of CSRG samples.

Fig. 7
Fig. 7

Relationship between the Bragg wavelength and the position of the probe beam on the CSRG. The linear fit gives a chirp of 1.36 × 10-5.

Fig. 8
Fig. 8

Transmittance versus wavelength for four positions of the probe beam on the CSRG.

Fig. 9
Fig. 9

Transmittance versus wavelength for several voltages applied to the CSRG.

Fig. 10
Fig. 10

Coupling efficiency of the device for fiber optic characterization (Fig. 6) versus voltage applied to the CSRG (the intrinsic 4-dB loss of the device was substracted in the experimental data). The solid curve is a guide to the eye; the data points are represented by filled squares.

Metrics