Abstract

We investigate the use of laser reflectometry near the critical angle to monitor particle adsorption onto a flat glass surface. Experimental results show that positive particles are adsorbed onto the glass surface and that their adsorption kinetics depend strongly on the volume fraction occupied by the particles in suspension but not appreciably on the particle size. The reflectance near the critical angle is dominated by the particles on the surface, with the contribution of the particles in suspension being very low. We compare the reflectance change near the critical angle with the change in reflectance near the Brewster angle when particles are adsorbed onto the glass surface. We find that reflectometry near the critical angle is 3000 times more sensitive than it is near the Brewster angle. Some optical images are presented to validate our results.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Adamczyk, “Adsorption of particles: theory,” in Encyclopedia of Surface and Colloid Science, A. T. Hubbard, ed. (Academic, San Diego, Calif., 2002), pp. 499–516.
  2. J. W. Evans, “Random and cooperative sequential adsorption,” Rev. Mod. Phys. 65, 1281–1329 (1993).
    [CrossRef]
  3. B. Widon, “Random sequential addition of hard spheres to a volume,” J. Chem. Phys. 44, 3888–3894 (1996).
    [CrossRef]
  4. L. Hinrichsen, J. Feder, T. Jossang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
    [CrossRef]
  5. J. Feder, I. J. Giaver, “Adsorption of ferritin,” J. Colloid Interface Sci. 78, 144–154 (1980).
    [CrossRef]
  6. Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
    [CrossRef]
  7. B. Vincent, C. A. Young, Th. Tadros, “Adsorption of small, positive particles onto large negative particles in the presence of polymer. Part 1—adsorption isotherms,” J. Chem. Soc. Faraday Trans. 1 76, 665–673 (1980).
    [CrossRef]
  8. Z. Adamczyk, P. Weronsky, “Random sequential adsorption of spheroidal particles: kinetics and jamming limit,” J. Chem. Phys. 105, 5562–5573 (1996).
    [CrossRef]
  9. Z. Adamczyk, P. Weronski, “Role of electrostatic interactions in particle adsorption,” Adv. Colloid Interface Sci. 63, 41–149 (1996).
    [CrossRef]
  10. P. Schaaf, J. Talbot, “Surface exclusion effects in adsorption processes,” J. Chem. Phys. 91, 4401–4409 (1989).
    [CrossRef]
  11. R. H. Swendsen, “Dynamics of random sequential adsorption,” Phys. Rev. A 24, 504–508 (1981).
    [CrossRef]
  12. P. Schaaf, J. Talbot, “Kinetics of random sequential adsorption,” Phys. Rev. Lett. 62, 175–177 (1989).
    [CrossRef] [PubMed]
  13. P. Shaaf, A. Johner, J. Talbot, “Asymptotic behavior of particles deposition,” Phys. Rev. Lett. 66, 1603–1605 (1991).
    [CrossRef]
  14. M. R. Böhmer, “Effects of polymers on particle adsorption on macroscopic surfaces studied by optical reflectometry,” J. Colloid Interface Sci. 197, 251–256 (1998).
    [CrossRef]
  15. P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
    [CrossRef]
  16. Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
    [CrossRef]
  17. E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
    [CrossRef]
  18. R. Cornelis van Duijvenbode, “Nanoparticle adsorption: reflections on ellipsometry,” Ph.D. dissertation (University of Leiden, Leiden, The Netherlands, 2001).
  19. A. García-Valenzuela, M. Peña-Gomar, C. Fajardo-Lira, “Measuring and sensing a complex refractive index by laser reflection near the critical angle,” Opt. Eng. 41, 1704–1716 (2002).
    [CrossRef]
  20. A. Kotara, K. Furusawa, Y. Takeda, “Colloid chemical studies of polystyrene lattices polymerized without any surfaceative agents,” Kolloid Z. Z. Polym. 239, 677–681 (1970).
    [CrossRef]
  21. W. Rasband, Image J (version 1.30), National Institutes of Health, Bethesda, Md., 2003; available at http://rsb.info.nih.gov/ij/ .
  22. F. Jimenez-Angeles, M. Lozada-Cassou, “A model macroions solution next to a charged wall: overcharging, charge reversal and charge inversion by macroions,” J. Phys. Chem B 108, 7286–7296 (2004).
    [CrossRef]
  23. G. H. Meeten, “Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials,” Meas. Sci. Technol. 8, 728–733 (1997).
    [CrossRef]

2004

F. Jimenez-Angeles, M. Lozada-Cassou, “A model macroions solution next to a charged wall: overcharging, charge reversal and charge inversion by macroions,” J. Phys. Chem B 108, 7286–7296 (2004).
[CrossRef]

2002

A. García-Valenzuela, M. Peña-Gomar, C. Fajardo-Lira, “Measuring and sensing a complex refractive index by laser reflection near the critical angle,” Opt. Eng. 41, 1704–1716 (2002).
[CrossRef]

2000

Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
[CrossRef]

1998

M. R. Böhmer, “Effects of polymers on particle adsorption on macroscopic surfaces studied by optical reflectometry,” J. Colloid Interface Sci. 197, 251–256 (1998).
[CrossRef]

1997

G. H. Meeten, “Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials,” Meas. Sci. Technol. 8, 728–733 (1997).
[CrossRef]

1996

B. Widon, “Random sequential addition of hard spheres to a volume,” J. Chem. Phys. 44, 3888–3894 (1996).
[CrossRef]

Z. Adamczyk, P. Weronsky, “Random sequential adsorption of spheroidal particles: kinetics and jamming limit,” J. Chem. Phys. 105, 5562–5573 (1996).
[CrossRef]

Z. Adamczyk, P. Weronski, “Role of electrostatic interactions in particle adsorption,” Adv. Colloid Interface Sci. 63, 41–149 (1996).
[CrossRef]

1995

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

1994

Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
[CrossRef]

1993

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

J. W. Evans, “Random and cooperative sequential adsorption,” Rev. Mod. Phys. 65, 1281–1329 (1993).
[CrossRef]

1991

P. Shaaf, A. Johner, J. Talbot, “Asymptotic behavior of particles deposition,” Phys. Rev. Lett. 66, 1603–1605 (1991).
[CrossRef]

1989

P. Schaaf, J. Talbot, “Kinetics of random sequential adsorption,” Phys. Rev. Lett. 62, 175–177 (1989).
[CrossRef] [PubMed]

P. Schaaf, J. Talbot, “Surface exclusion effects in adsorption processes,” J. Chem. Phys. 91, 4401–4409 (1989).
[CrossRef]

1986

L. Hinrichsen, J. Feder, T. Jossang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

1981

R. H. Swendsen, “Dynamics of random sequential adsorption,” Phys. Rev. A 24, 504–508 (1981).
[CrossRef]

1980

J. Feder, I. J. Giaver, “Adsorption of ferritin,” J. Colloid Interface Sci. 78, 144–154 (1980).
[CrossRef]

B. Vincent, C. A. Young, Th. Tadros, “Adsorption of small, positive particles onto large negative particles in the presence of polymer. Part 1—adsorption isotherms,” J. Chem. Soc. Faraday Trans. 1 76, 665–673 (1980).
[CrossRef]

1970

A. Kotara, K. Furusawa, Y. Takeda, “Colloid chemical studies of polystyrene lattices polymerized without any surfaceative agents,” Kolloid Z. Z. Polym. 239, 677–681 (1970).
[CrossRef]

Adamczyk, Z.

Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
[CrossRef]

Z. Adamczyk, P. Weronsky, “Random sequential adsorption of spheroidal particles: kinetics and jamming limit,” J. Chem. Phys. 105, 5562–5573 (1996).
[CrossRef]

Z. Adamczyk, P. Weronski, “Role of electrostatic interactions in particle adsorption,” Adv. Colloid Interface Sci. 63, 41–149 (1996).
[CrossRef]

Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
[CrossRef]

Z. Adamczyk, “Adsorption of particles: theory,” in Encyclopedia of Surface and Colloid Science, A. T. Hubbard, ed. (Academic, San Diego, Calif., 2002), pp. 499–516.

Bedeaux, D.

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

Belouschek, P.

Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
[CrossRef]

Böhmer, M. R.

M. R. Böhmer, “Effects of polymers on particle adsorption on macroscopic surfaces studied by optical reflectometry,” J. Colloid Interface Sci. 197, 251–256 (1998).
[CrossRef]

Cornelis van Duijvenbode, R.

R. Cornelis van Duijvenbode, “Nanoparticle adsorption: reflections on ellipsometry,” Ph.D. dissertation (University of Leiden, Leiden, The Netherlands, 2001).

Evans, J. W.

J. W. Evans, “Random and cooperative sequential adsorption,” Rev. Mod. Phys. 65, 1281–1329 (1993).
[CrossRef]

Fajardo-Lira, C.

A. García-Valenzuela, M. Peña-Gomar, C. Fajardo-Lira, “Measuring and sensing a complex refractive index by laser reflection near the critical angle,” Opt. Eng. 41, 1704–1716 (2002).
[CrossRef]

Feder, J.

L. Hinrichsen, J. Feder, T. Jossang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

J. Feder, I. J. Giaver, “Adsorption of ferritin,” J. Colloid Interface Sci. 78, 144–154 (1980).
[CrossRef]

Furusawa, K.

A. Kotara, K. Furusawa, Y. Takeda, “Colloid chemical studies of polystyrene lattices polymerized without any surfaceative agents,” Kolloid Z. Z. Polym. 239, 677–681 (1970).
[CrossRef]

García-Valenzuela, A.

A. García-Valenzuela, M. Peña-Gomar, C. Fajardo-Lira, “Measuring and sensing a complex refractive index by laser reflection near the critical angle,” Opt. Eng. 41, 1704–1716 (2002).
[CrossRef]

Giaver, I. J.

J. Feder, I. J. Giaver, “Adsorption of ferritin,” J. Colloid Interface Sci. 78, 144–154 (1980).
[CrossRef]

Hinrichsen, L.

L. Hinrichsen, J. Feder, T. Jossang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Jimenez-Angeles, F.

F. Jimenez-Angeles, M. Lozada-Cassou, “A model macroions solution next to a charged wall: overcharging, charge reversal and charge inversion by macroions,” J. Phys. Chem B 108, 7286–7296 (2004).
[CrossRef]

Johner, A.

P. Shaaf, A. Johner, J. Talbot, “Asymptotic behavior of particles deposition,” Phys. Rev. Lett. 66, 1603–1605 (1991).
[CrossRef]

Jossang, T.

L. Hinrichsen, J. Feder, T. Jossang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Koper, J. M.

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

Kotara, A.

A. Kotara, K. Furusawa, Y. Takeda, “Colloid chemical studies of polystyrene lattices polymerized without any surfaceative agents,” Kolloid Z. Z. Polym. 239, 677–681 (1970).
[CrossRef]

Lozada-Cassou, M.

F. Jimenez-Angeles, M. Lozada-Cassou, “A model macroions solution next to a charged wall: overcharging, charge reversal and charge inversion by macroions,” J. Phys. Chem B 108, 7286–7296 (2004).
[CrossRef]

Mann, E. K.

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

Meeten, G. H.

G. H. Meeten, “Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials,” Meas. Sci. Technol. 8, 728–733 (1997).
[CrossRef]

Peña-Gomar, M.

A. García-Valenzuela, M. Peña-Gomar, C. Fajardo-Lira, “Measuring and sensing a complex refractive index by laser reflection near the critical angle,” Opt. Eng. 41, 1704–1716 (2002).
[CrossRef]

Schaaf, P.

P. Schaaf, J. Talbot, “Surface exclusion effects in adsorption processes,” J. Chem. Phys. 91, 4401–4409 (1989).
[CrossRef]

P. Schaaf, J. Talbot, “Kinetics of random sequential adsorption,” Phys. Rev. Lett. 62, 175–177 (1989).
[CrossRef] [PubMed]

Senger, B.

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

Shaaf, P.

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

P. Shaaf, A. Johner, J. Talbot, “Asymptotic behavior of particles deposition,” Phys. Rev. Lett. 66, 1603–1605 (1991).
[CrossRef]

Shaff, P.

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

Siwek, B.

Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
[CrossRef]

Swendsen, R. H.

R. H. Swendsen, “Dynamics of random sequential adsorption,” Phys. Rev. A 24, 504–508 (1981).
[CrossRef]

Szyk-Warszynska, L.

Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
[CrossRef]

Tadros, Th.

B. Vincent, C. A. Young, Th. Tadros, “Adsorption of small, positive particles onto large negative particles in the presence of polymer. Part 1—adsorption isotherms,” J. Chem. Soc. Faraday Trans. 1 76, 665–673 (1980).
[CrossRef]

Takeda, Y.

A. Kotara, K. Furusawa, Y. Takeda, “Colloid chemical studies of polystyrene lattices polymerized without any surfaceative agents,” Kolloid Z. Z. Polym. 239, 677–681 (1970).
[CrossRef]

Talbot, J.

P. Shaaf, A. Johner, J. Talbot, “Asymptotic behavior of particles deposition,” Phys. Rev. Lett. 66, 1603–1605 (1991).
[CrossRef]

P. Schaaf, J. Talbot, “Kinetics of random sequential adsorption,” Phys. Rev. Lett. 62, 175–177 (1989).
[CrossRef] [PubMed]

P. Schaaf, J. Talbot, “Surface exclusion effects in adsorption processes,” J. Chem. Phys. 91, 4401–4409 (1989).
[CrossRef]

van der Zeeuw, E. A.

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

Vincent, B.

B. Vincent, C. A. Young, Th. Tadros, “Adsorption of small, positive particles onto large negative particles in the presence of polymer. Part 1—adsorption isotherms,” J. Chem. Soc. Faraday Trans. 1 76, 665–673 (1980).
[CrossRef]

Voegel, J. C.

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

Warszynski, P.

Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
[CrossRef]

Weronski, P.

Z. Adamczyk, P. Weronski, “Role of electrostatic interactions in particle adsorption,” Adv. Colloid Interface Sci. 63, 41–149 (1996).
[CrossRef]

Weronsky, P.

Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
[CrossRef]

Z. Adamczyk, P. Weronsky, “Random sequential adsorption of spheroidal particles: kinetics and jamming limit,” J. Chem. Phys. 105, 5562–5573 (1996).
[CrossRef]

Widon, B.

B. Widon, “Random sequential addition of hard spheres to a volume,” J. Chem. Phys. 44, 3888–3894 (1996).
[CrossRef]

Wojtaszczyk, P.

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

Young, C. A.

B. Vincent, C. A. Young, Th. Tadros, “Adsorption of small, positive particles onto large negative particles in the presence of polymer. Part 1—adsorption isotherms,” J. Chem. Soc. Faraday Trans. 1 76, 665–673 (1980).
[CrossRef]

Zembala, M.

Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
[CrossRef]

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

Adv. Colloid Interface Sci.

Z. Adamczyk, P. Weronski, “Role of electrostatic interactions in particle adsorption,” Adv. Colloid Interface Sci. 63, 41–149 (1996).
[CrossRef]

Adv. Colloid. Interface Sci.

Z. Adamczyk, B. Siwek, M. Zembala, P. Belouschek, “Kinetics of localized adsorption of colloid particles,” Adv. Colloid. Interface Sci. 48, 151–280 (1994).
[CrossRef]

Colloids Surf. A

Z. Adamczyk, P. Warszynski, L. Szyk-Warszynska, P. Weronsky, “Role of convection in particle deposition at solid surface,” Colloids Surf. A 165, 157–187 (2000).
[CrossRef]

J. Chem. Phys.

P. Wojtaszczyk, P. Shaaf, B. Senger, M. Zembala, J. C. Voegel, “Statistical properties of surface covered by large spheres,” J. Chem. Phys. 9, 7198–7208 (1993).
[CrossRef]

P. Schaaf, J. Talbot, “Surface exclusion effects in adsorption processes,” J. Chem. Phys. 91, 4401–4409 (1989).
[CrossRef]

Z. Adamczyk, P. Weronsky, “Random sequential adsorption of spheroidal particles: kinetics and jamming limit,” J. Chem. Phys. 105, 5562–5573 (1996).
[CrossRef]

B. Widon, “Random sequential addition of hard spheres to a volume,” J. Chem. Phys. 44, 3888–3894 (1996).
[CrossRef]

J. Chem. Soc. Faraday Trans. 1

B. Vincent, C. A. Young, Th. Tadros, “Adsorption of small, positive particles onto large negative particles in the presence of polymer. Part 1—adsorption isotherms,” J. Chem. Soc. Faraday Trans. 1 76, 665–673 (1980).
[CrossRef]

J. Colloid Interface Sci.

J. Feder, I. J. Giaver, “Adsorption of ferritin,” J. Colloid Interface Sci. 78, 144–154 (1980).
[CrossRef]

M. R. Böhmer, “Effects of polymers on particle adsorption on macroscopic surfaces studied by optical reflectometry,” J. Colloid Interface Sci. 197, 251–256 (1998).
[CrossRef]

J. Phys. Chem B

F. Jimenez-Angeles, M. Lozada-Cassou, “A model macroions solution next to a charged wall: overcharging, charge reversal and charge inversion by macroions,” J. Phys. Chem B 108, 7286–7296 (2004).
[CrossRef]

J. Phys. Chem.

E. K. Mann, E. A. van der Zeeuw, J. M. Koper, P. Shaff, D. Bedeaux, “Optical properties of surface covered with latex particles: comparison with theory,” J. Phys. Chem. 99, 790–797 (1995).
[CrossRef]

J. Stat. Phys.

L. Hinrichsen, J. Feder, T. Jossang, “Geometry of random sequential adsorption,” J. Stat. Phys. 44, 793–827 (1986).
[CrossRef]

Kolloid Z. Z. Polym.

A. Kotara, K. Furusawa, Y. Takeda, “Colloid chemical studies of polystyrene lattices polymerized without any surfaceative agents,” Kolloid Z. Z. Polym. 239, 677–681 (1970).
[CrossRef]

Meas. Sci. Technol.

G. H. Meeten, “Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials,” Meas. Sci. Technol. 8, 728–733 (1997).
[CrossRef]

Opt. Eng.

A. García-Valenzuela, M. Peña-Gomar, C. Fajardo-Lira, “Measuring and sensing a complex refractive index by laser reflection near the critical angle,” Opt. Eng. 41, 1704–1716 (2002).
[CrossRef]

Phys. Rev. A

R. H. Swendsen, “Dynamics of random sequential adsorption,” Phys. Rev. A 24, 504–508 (1981).
[CrossRef]

Phys. Rev. Lett.

P. Schaaf, J. Talbot, “Kinetics of random sequential adsorption,” Phys. Rev. Lett. 62, 175–177 (1989).
[CrossRef] [PubMed]

P. Shaaf, A. Johner, J. Talbot, “Asymptotic behavior of particles deposition,” Phys. Rev. Lett. 66, 1603–1605 (1991).
[CrossRef]

Rev. Mod. Phys.

J. W. Evans, “Random and cooperative sequential adsorption,” Rev. Mod. Phys. 65, 1281–1329 (1993).
[CrossRef]

Other

Z. Adamczyk, “Adsorption of particles: theory,” in Encyclopedia of Surface and Colloid Science, A. T. Hubbard, ed. (Academic, San Diego, Calif., 2002), pp. 499–516.

R. Cornelis van Duijvenbode, “Nanoparticle adsorption: reflections on ellipsometry,” Ph.D. dissertation (University of Leiden, Leiden, The Netherlands, 2001).

W. Rasband, Image J (version 1.30), National Institutes of Health, Bethesda, Md., 2003; available at http://rsb.info.nih.gov/ij/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

AFM images (4 μm × 4 μm) of (a) positive and (b) negative particles of 430- and 250-nm diameter, respectively.

Fig. 2
Fig. 2

Experimental setup: M1 and M2, first surface mirrors; PZT, angle modulator used to tilt mirror M1. A half-cylinder prism is used for an internal reflection configuration. The prism and container are placed on top of a high-precision rotary goniometer.

Fig. 3
Fig. 3

Schematic representation of the injection system and the homemade flux cell.

Fig. 4
Fig. 4

Reflectance signal as a function of time for positive particles (diameter, 258 nm; volume fraction, 0.1%). The first arrow indicates when the particles are injected. The second and third arrows indicate when the film of particles adsorbed onto the surface is cleaned.

Fig. 5
Fig. 5

Reflectance signal as a function of time for negative particles (diameter, 250 nm; volume fraction, 0.1%). The second arrow indicates when the surface is cleaned. The signal is constant between these two arrows, indicating that there was no adsorption.

Fig. 6
Fig. 6

Reflectance curves showing the adsorption kinetics of positive particles for different volume fractions (0.023%, 0.07%, and 0.14%). Particle diameter, 129 nm.

Fig. 7
Fig. 7

Reflectance curves showing the adsorption kinetics of positive particles of different diameters (258 and 542 nm). Volume fraction, 0.14%.

Fig. 8
Fig. 8

Optical images of the glass probes removed at (a) 900 s, (b) 1800 s, and (c) 3600 s after the adsorption process had started (diameter, 430 nm; volume fraction, 0.14%). (d) Surface of the prism at the end of the adsorption process.

Fig. 9
Fig. 9

Reflectance signal after rinsing (diameter, 300 nm; volume fraction, 0.14%). The first arrow indicates when the positive particles were injected, and the second arrow indicates when pure water was injected into the container.

Fig. 10
Fig. 10

Reflectance signal as a function of time for the sequential injection of positive and negative particles of 258- and 250-nm diameter, respectively, and of 0.14% volume fraction.

Fig. 11
Fig. 11

Optical image of the prism after sequential injection of positive and negative particles of 258- and 250-nm diameter, respectively, at 0.14% volume fraction.

Fig. 12
Fig. 12

Reflectance signal at the Brewster and critical angles (diameter, 430 nm; volume fraction, 0.14%).

Tables (1)

Tables Icon

Table 1 Summary of the Particle Suspensions Used in This Study

Metrics