Abstract

A batch-fabricated microball lens array not only provides accurate coupling distances but also replaces traditional components such as aspheric lenses and expensive graded-index lenses without sacrificing performance and reduces assembly cost. The results of extensive experiments show a critical aspect ratio of ∼0.3. That is, when the aspect ratio is larger than 0.3, the final shape of a reflowed lens changes to that of a microball rather than of a mushroom. Using a laser with a 633-nm wavelength yields an optimum coupling distance of ∼8 μm with an insertion loss below -1.3 dB (coupling efficiency, ∼73%).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, Germany, 1999), pp. 85–103.
  2. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for the monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  3. M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
    [CrossRef]
  4. M. Stern, T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3550 (1994).
    [CrossRef]
  5. M. E. Matamedi, M. P. Griswold, R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 22–32 (1991).
    [CrossRef]
  6. M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
    [CrossRef]
  7. K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996).
    [CrossRef]
  8. W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001).
    [CrossRef]
  9. J. Gottert, J. Mohr, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” in Micro-Optics II, A. M. Verga Scheggi, ed., Proc. SPIE1506, 170–178 (1991).
    [CrossRef]
  10. S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002).
    [CrossRef]
  11. H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
    [CrossRef]
  12. H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001).
    [CrossRef]
  13. L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.
  14. M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
    [CrossRef]
  15. H. Toshiyoshi, H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Syst. 5, 231–237 (1996).
    [CrossRef]
  16. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
    [CrossRef]
  17. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1284 (1988).
    [CrossRef] [PubMed]
  18. M. C. Hutley, R. F. Stevens, D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” in IEE Colloquium on Optical Connection and Switching Networks for Communication and Computing (Institute of Electrical Engineers, London, 1990), pp. 11-1–11-3.
  19. V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Lens-ended fibers for medical applications: a new fabrication technique,” Appl. Opt. 23, 3277–3283 (1984).
    [CrossRef] [PubMed]
  20. G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983).
    [CrossRef]
  21. W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).
  22. P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
    [CrossRef]
  23. S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
    [CrossRef]

2002

S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002).
[CrossRef]

2001

H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001).
[CrossRef]

W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001).
[CrossRef]

S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
[CrossRef]

2000

W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).

1997

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

1996

H. Toshiyoshi, H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996).
[CrossRef]

1994

M. Stern, T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3550 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
[CrossRef]

1990

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

1988

1984

1983

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983).
[CrossRef]

Bigl, F.

K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996).
[CrossRef]

Borghs, G.

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

Chen, T.

W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001).
[CrossRef]

Chou, H. P.

S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
[CrossRef]

Chou, M. C.

S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
[CrossRef]

Chou, M.-C.

H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001).
[CrossRef]

H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
[CrossRef]

Connell, G. A. N.

Cox, W. R.

W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001).
[CrossRef]

W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).

Daly, D.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

M. C. Hutley, R. F. Stevens, D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” in IEE Colloquium on Optical Connection and Switching Networks for Communication and Computing (Institute of Electrical Engineers, London, 1990), pp. 11-1–11-3.

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

de Vrieze, H. M.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983).
[CrossRef]

Fujita, H.

H. Toshiyoshi, H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

Gale, M. T.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
[CrossRef]

Genoe, J.

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

Gottert, J.

J. Gottert, J. Mohr, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” in Micro-Optics II, A. M. Verga Scheggi, ed., Proc. SPIE1506, 170–178 (1991).
[CrossRef]

Griswold, M. P.

M. E. Matamedi, M. P. Griswold, R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 22–32 (1991).
[CrossRef]

Guan, C.

W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).

Hayes, D.

W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001).
[CrossRef]

Hayes, D. J.

W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).

Heremens, P.

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

Hirsch, D.

K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996).
[CrossRef]

Huang, L. S.

L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.

Hutley, M. C.

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

M. C. Hutley, R. F. Stevens, D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” in IEE Colloquium on Optical Connection and Switching Networks for Communication and Computing (Institute of Electrical Engineers, London, 1990), pp. 11-1–11-3.

Jahns, J.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, Germany, 1999), pp. 85–103.

Jay, T. R.

M. Stern, T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3550 (1994).
[CrossRef]

Khoe, G. D.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983).
[CrossRef]

Kim, C. J.

L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.

King, C. R.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

Knowlden, R. E.

M. E. Matamedi, M. P. Griswold, R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 22–32 (1991).
[CrossRef]

Kuijk, M.

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

Lee, K.-C.

S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002).
[CrossRef]

Lee, S. S.

S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002).
[CrossRef]

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.

Lee, S.-K.

S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002).
[CrossRef]

Lin, L. Y.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

Matamedi, M. E.

M. E. Matamedi, M. P. Griswold, R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 22–32 (1991).
[CrossRef]

Mohr, J.

J. Gottert, J. Mohr, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” in Micro-Optics II, A. M. Verga Scheggi, ed., Proc. SPIE1506, 170–178 (1991).
[CrossRef]

Motamedi, E.

L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.

Mu, C.-K.

H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
[CrossRef]

Pan, C. T.

H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001).
[CrossRef]

S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
[CrossRef]

Pedersen, J.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
[CrossRef]

Popovic, Z. D.

Poulissen, J.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983).
[CrossRef]

Righini, G. C.

Rossi, M.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
[CrossRef]

Russo, V.

Schutz, H.

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
[CrossRef]

Shen, S. C.

S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
[CrossRef]

Shyu, R. F.

H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
[CrossRef]

Sinzinger, S.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, Germany, 1999), pp. 85–103.

Sottini, S.

Sprague, R. A.

Stern, M.

M. Stern, T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3550 (1994).
[CrossRef]

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

M. C. Hutley, R. F. Stevens, D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” in IEE Colloquium on Optical Connection and Switching Networks for Communication and Computing (Institute of Electrical Engineers, London, 1990), pp. 11-1–11-3.

Toshiyoshi, H.

H. Toshiyoshi, H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

Trigari, S.

Vounckx, R.

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

Wallace, D. B.

W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).

Wu, M. C.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.

Yang, A.

H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
[CrossRef]

Yang, H.

H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001).
[CrossRef]

H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
[CrossRef]

Zimmer, K.

K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996).
[CrossRef]

Appl. Opt.

Appl. Surf. Sci.

K. Zimmer, D. Hirsch, F. Bigl, “Excimer laser machining for the fabrication of analogous microstructures,” Appl. Surf. Sci. 96–98, 425–429 (1996).
[CrossRef]

Electron. Lett.

G. D. Khoe, J. Poulissen, H. M. de Vrieze, “Efficient coupling of laser diodes to tapered monomode fibers with high-index end,” Electron. Lett. 17, 205–207 (1983).
[CrossRef]

IEEE J. Microelectromech. Syst.

H. Toshiyoshi, H. Fujita, “Electrostatic micro torsion mirrors for an optical switch matrix,” IEEE J. Microelectromech. Syst. 5, 231–237 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Heremens, J. Genoe, M. Kuijk, R. Vounckx, G. Borghs, “Mushroom microlenses: optimized microlenses by reflow of multiple layers of photoresist,” IEEE Photon. Technol. Lett. 9, 1367–1369 (1997).
[CrossRef]

Int. J. High Speed Electron. Syst.

M. C. Wu, L. Y. Lin, S. S. Lee, C. R. King, “Free space integrated optics realized by surface micromachining,” Int. J. High Speed Electron. Syst. 8, 283–297 (1997).
[CrossRef]

Int. J. Microcircuits Electron. Packag.

W. R. Cox, C. Guan, D. J. Hayes, D. B. Wallace, “Microjet printing of micro-optical interconnects,” Int. J. Microcircuits Electron. Packag. 23, 346–351 (2000).

J. Magn. Magn. Mater.

S. C. Shen, C. T. Pan, M. C. Chou, H. P. Chou, “Electromagnetic optical switch for optical network communication,” J. Magn. Magn. Mater. 239, 610–613 (2001).
[CrossRef]

J. Micromech. Microeng.

S.-K. Lee, K.-C. Lee, S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process,” J. Micromech. Microeng. 12, 334–340 (2002).
[CrossRef]

H. Yang, C. T. Pan, M.-C. Chou, “Ultra-fine machining tool/molds by LIGA technology,” J. Micromech. Microeng. 11, 94–99 (2001).
[CrossRef]

J. Mod. Opt.

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

Meas. Sci. Technol.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol. 1, 759–766 (1990).
[CrossRef]

Opt. Eng.

M. Stern, T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Opt. Eng. 33, 3547–3550 (1994).
[CrossRef]

M. T. Gale, M. Rossi, J. Pedersen, H. Schutz, “Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists,” Opt. Eng. 22, 3556–3566 (1994).
[CrossRef]

Opt. Photon. News

W. R. Cox, T. Chen, D. Hayes, “Micro-optics fabrication by ink-jet printing,” Opt. Photon. News 12(6), 32–35 (2001).
[CrossRef]

Other

J. Gottert, J. Mohr, “Characterization of micro-optical components fabricated by deep-etch x-ray lithography,” in Micro-Optics II, A. M. Verga Scheggi, ed., Proc. SPIE1506, 170–178 (1991).
[CrossRef]

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinheim, Germany, 1999), pp. 85–103.

M. E. Matamedi, M. P. Griswold, R. E. Knowlden, “Silicon microlenses for enhanced optical coupling to silicon focal planes,” in Miniature and Micro-Optics: Fabrication and System Applications, C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 22–32 (1991).
[CrossRef]

M. C. Hutley, R. F. Stevens, D. Daly, “The manufacture of microlens arrays and fan-out gratings in photoresist,” in IEE Colloquium on Optical Connection and Switching Networks for Communication and Computing (Institute of Electrical Engineers, London, 1990), pp. 11-1–11-3.

L. S. Huang, S. S. Lee, E. Motamedi, M. C. Wu, C. J. Kim, “MEMS packaging for micro mirror switches,” in 48th IEEE Electronic Components and Technology Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), pp. 592–597.

H. Yang, M.-C. Chou, A. Yang, C.-K. Mu, R. F. Shyu, “Realization of fabricating microlens array in mass production,” in Optical Fabrication and Testing, R. Geyl, J. Maxwell, eds., Proc. SPIE3739, 178–185 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Three-dimensional schematic drawing and (b) cross-sectional view of the coupling platform integrated with the microball lens.

Fig. 2
Fig. 2

Theoretical surface tensions in a dual-layer system for fabrication of microball lenses.

Fig. 3
Fig. 3

Schematic illustration of the fabrication of microball lenses: (a) polyimide and photoresist spin coating, (b) lithography, (c) polyimide etching, (d) reflow.

Fig. 4
Fig. 4

Effects of various diameters on microlens formation (PI at 1000 rpm, photoresist at 800 rpm, reflow at 220 °C). Diameters (a) 50-, (b) 100-, (c) 150-μm.

Fig. 5
Fig. 5

Reflow characteristics: (a) single layer after reflow, (b) dual layer after reflow.

Fig. 6
Fig. 6

Effects of PI thickness on the radius of a microball lens.

Fig. 7
Fig. 7

Effects of aspect ratio H/ D on the radius of a microlens (R/ D) at temperatures of (a) 190 °C, (b) 220 °C, and (c) 250 °C.

Fig. 8
Fig. 8

Shape profiles of microball lens formation: (a) mushroom shape, (b) ball shape.

Fig. 9
Fig. 9

Relationship between reflow temperature and radius of a microlens.

Fig. 10
Fig. 10

Experimental setup of the microlens powermeter.

Fig. 11
Fig. 11

Result of measuring a microball lens: (a) Photograph of visible light focused by a microball lens. (b) Coupling efficiency of a microball lens of 40-μm diameter.

Fig. 12
Fig. 12

Lens fabricated by our novel batch-fabrication technique: (a) Surface profile of the fabricated lens. (b) Deviation of the microball lens from perfect spherical shape.

Fig. 13
Fig. 13

WYKO optical measurement system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

TSA=TLS+TAL cos θ,

Metrics