Abstract

The use of uniform-waist cladded multimode tapered optical fibers is demonstrated for evanescent wave spectroscopy and sensors. The tapering is a simple, low-loss process and consists of stretching the fiber while it is being heated with an oscillating flame torch. As examples, a refractive-index sensor and a hydrogen sensor are demonstrated by use of a conventional graded-index multimode optical fiber. Also, absorbance spectra are measured while the tapers are immersed in an absorbing liquid. It is found experimentally that the uniform waist is the part of the taper that contributes most to the sensor sensitivity. The taper waist diameter may also be used to adjust the sensor dynamic range.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. T. V. Grattan, B. T. Meggitt, eds., Optical Fiber Technology Vol. 4: Chemical and Environmental Sensing (Klumer Academic, Dordrecht, The Netherlands, 1999).
  2. J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, Chichester, UK, 2002).
  3. F. S. Ligler, C. A. R. Taitt, eds., Optical Biosensors: Present and Future (Elsevier Science, Amsterdam, The Netherlands, 2002).
  4. G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
    [CrossRef]
  5. H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
    [CrossRef]
  6. N. Nath, S. Anand, “Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition,” Opt. Eng. 37, 220–228 (1998).
    [CrossRef]
  7. A. Grazia Mignani, R. Falciai, L. Ciaccheri, “Evanescent-wave absorption spectroscopy by means of bitapered multimode optical fibers,” Appl. Spectrosc. 52, 546–550 (1998).
    [CrossRef]
  8. S. Gou, S. Albin, “Transmission property and evanescent wave absorption of cladded multimode fiber tapers,” Opt. Express 11, 215–223 (2003), http://www.opticsexpress.org .
    [CrossRef]
  9. F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
    [CrossRef]
  10. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  11. J. Villatoro, D. Monzon-Hernandez, E. Mejia, “Fabrication and modeling of uniform-waist singlemode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003).
    [CrossRef] [PubMed]
  12. T. Takeo, H. Hattori, “Silica glass fiber photorefractometer,” Appl. Opt. 31, 44–50 (1992).
    [CrossRef] [PubMed]
  13. W. Johnstone, G. Thusrby, D. Moodie, K. McCallion, “Fiber-optic refractometer that utilizes multimode overlay devices,” Opt. Lett. 17, 1538–1540 (1992).
    [CrossRef]
  14. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
    [CrossRef]
  15. J. Zubia, G. Garitaonaindia, J. Arrue, “Passive device based on plastic optical fibers to determine the indices of refraction of liquids,” Appl. Opt. 39, 941–946 (2000).
    [CrossRef]
  16. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
    [CrossRef]
  17. G. Laggont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
    [CrossRef]
  18. M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B 22, 155–163 (1994).
    [CrossRef]
  19. M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
    [CrossRef]
  20. J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003).
    [CrossRef]

2003 (3)

2001 (2)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

G. Laggont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

2000 (1)

1999 (1)

M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[CrossRef]

1998 (3)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

N. Nath, S. Anand, “Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition,” Opt. Eng. 37, 220–228 (1998).
[CrossRef]

A. Grazia Mignani, R. Falciai, L. Ciaccheri, “Evanescent-wave absorption spectroscopy by means of bitapered multimode optical fibers,” Appl. Spectrosc. 52, 546–550 (1998).
[CrossRef]

1995 (1)

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

1994 (2)

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B 22, 155–163 (1994).
[CrossRef]

1992 (3)

1988 (1)

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Ahlfeldt, H.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Albin, S.

Anand, S.

N. Nath, S. Anand, “Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition,” Opt. Eng. 37, 220–228 (1998).
[CrossRef]

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Andres, M. V.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003).
[CrossRef]

Arrue, J.

Asseh, A.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Bilodeau, F.

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Birks, T. A.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Butler, M. A.

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B 22, 155–163 (1994).
[CrossRef]

Chen, Z.

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

Ciaccheri, L.

Cruz, J. L.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003).
[CrossRef]

Culshaw, B.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Diez, A.

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003).
[CrossRef]

Ecke, W.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Edwall, G.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Falciai, R.

Faucher, S.

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Ferdinand, P.

G. Laggont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Gao, H. H.

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

Garitaonaindia, G.

Gou, S.

Grazia Mignani, A.

Hattori, H.

Hill, K. O.

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Johnson, D. C.

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

Johnstone, W.

Kaplan, D. L.

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

Kazemi, A.

M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[CrossRef]

Kumar, J.

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

Laggont, G.

G. Laggont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Li, Y. W.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

McCallion, K.

Mejia, E.

Monzon-Hernandez, D.

Moodie, D.

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Nath, N.

N. Nath, S. Anand, “Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition,” Opt. Eng. 37, 220–228 (1998).
[CrossRef]

Petrick, R.

M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[CrossRef]

Sahlgren, B.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Sandgren, S.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Stewart, G.

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Stubbe, R.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Sutapun, B.

M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[CrossRef]

Tabib, M.

M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[CrossRef]

Takeo, T.

Thusrby, G.

Tripathy, S. K.

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

Villatoro, J.

J. Villatoro, D. Monzon-Hernandez, E. Mejia, “Fabrication and modeling of uniform-waist singlemode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003).
[CrossRef] [PubMed]

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003).
[CrossRef]

Willsch, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Zubia, J.

Appl. Opt. (3)

Appl. Spectrosc. (1)

Fiber Integr. Opt. (1)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

IEEE J. Lightwave Technol. (2)

F. Bilodeau, K. O. Hill, S. Faucher, D. C. Johnson, “Low loss highly overcoupled fused couplers: fabrication and sensitivity to external pressure,” IEEE J. Lightwave Technol. 6, 1476–1482 (1988).
[CrossRef]

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” IEEE J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

IEEE Sens. J. (1)

J. Villatoro, A. Diez, J. L. Cruz, M. V. Andres, “In-line highly sensitive hydrogen sensors based on Pd-coated single-mode tapered fibers,” IEEE Sens. J. 3, 533–537 (2003).
[CrossRef]

Meas. Sci. Technol. (2)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

G. Laggont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Opt. Eng. (2)

H. H. Gao, Z. Chen, J. Kumar, S. K. Tripathy, D. L. Kaplan, “Tapered fiber tips for fiber optics biosensors,” Opt. Eng. 34, 3465–3469 (1995).
[CrossRef]

N. Nath, S. Anand, “Evanescent wave fiber optic fluorosensor: effect of tapering configuration on the signal acquisition,” Opt. Eng. 37, 220–228 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

G. Stewart, B. Culshaw, “Optical waveguide modeling and design for evanescent field chemical sensors,” Opt. Quantum Electron. 26, S249–S259 (1994).
[CrossRef]

Sens. Actuators B (2)

M. A. Butler, “Micromirror optical-fiber hydrogen sensor,” Sens. Actuators B 22, 155–163 (1994).
[CrossRef]

M. Tabib, B. Sutapun, R. Petrick, A. Kazemi, “Highly sensitive hydrogen sensors based on palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B 56, 158–163 (1999).
[CrossRef]

Other (3)

K. T. V. Grattan, B. T. Meggitt, eds., Optical Fiber Technology Vol. 4: Chemical and Environmental Sensing (Klumer Academic, Dordrecht, The Netherlands, 1999).

J. M. López-Higuera, ed., Handbook of Optical Fibre Sensing Technology (Wiley, Chichester, UK, 2002).

F. S. Ligler, C. A. R. Taitt, eds., Optical Biosensors: Present and Future (Elsevier Science, Amsterdam, The Netherlands, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Illustration of a cladded MMTF: ρ0, ρ, L T , and L 0 are, respectively, the initial fiber diameter, the taper waist diameter, the total taper length, and the length of the uniform waist. (b) Cross section of the tapered fiber: n 1, n 2, n 3, are, respectively, the RI of the fiber core, the fiber cladding, and the external (sample) medium. The shadowed area represents a mirror as a possibility for remote sensing.

Fig. 2
Fig. 2

Experimental transmission versus ρ for uniform-waist tapers. The inset also shows the transmission versus ρ but for parabolic tapers. In both plots the solid and dashed curves were obtained, respectively, with 62.5- and 50-μm core-diameter graded-index MMFs. In both plots the horizontal dashed-dotted line shows the maximum losses over a range of ρ values.

Fig. 3
Fig. 3

Theoretical transmission of a cladded MMTF as a function of the external RI for different waist diameters. For the calculation, L 0 = 4 mm, n 1 = 1.469, and n 2 = 1.459 were assumed. Traces are numbered from 1 to 8, and correspond, respectively, to values of ρ from 112.5 to 12.5 μm, separated by 12.5 μm. The vertical dotted line shows that a RI can be simultaneously measured by use of samples of different diameters.

Fig. 4
Fig. 4

Experimental transmission of some cladded MMTFs as a function of the external RI. Circles, squares, rhombuses, and triangles are experimental points obtained with samples of ρ = 80, 60, 40, and 20 μm, respectively. The solid curves are fitting curves.

Fig. 5
Fig. 5

(a) Absorbance spectra of a taper immersed in water with a dissolved organic blue dye. The solid and the dotted curves were obtained, respectively, when the whole taper and when only the uniform section of the taper were immersed in the sample liquid. (b) Absorbance spectra of tapers of different waist diameters immersed in the sample liquid.

Fig. 6
Fig. 6

Transmission versus time of three Pd-coated MMTFs with ρ = 30 μm (solid curve), 50 μm (dashed curve), and 70 μm (dotted curve) when they were exposed successively to a 2% hydrogen concentration. In all cases the palladium layer was 15 nm thick and had a L 0 = 10 mm. The measurements were carried out at 850 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ρ=ρ0 exp-z/2L0,
Aλ=-log10Sλ-DλRλ-Dλ.

Metrics