Abstract

We measured fluorescence quantum yields of acetone and 3-pentanone as a pure gas and with nitrogen diluent at room temperature at 20, 507, and 1013 mbar using 248, 266, and 308 nm excitation by calibrating the optical collection system with Rayleigh scattering from nitrogen. At 20 mbar with 308-nm excitation, the fluorescence quantum yields for acetone and 3-pentanone are 7 ± 1 × 10-4 and 1.1 ± 0.2 × 10-3, respectively, and each decreases with decreasing excitation wavelength. These directly measured values are significantly lower than earlier ones that were based on a chain of relative measurements. The observed pressure and excitation wavelength dependence is in qualitative agreement with a previously developed fluorescence quantum yield model, but the absolute numbers disagree. Changing acetone’s fluorescence rate constant to 3 × 105 s-1 from its previous value of 8 × 105 s-1 resulted in good agreement between our measurements and the model.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lozano, B. Yip, R. Hanson, “Acetone—a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
    [CrossRef]
  2. M. Thurber, F. Grisch, R. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
    [CrossRef] [PubMed]
  3. S. Smith, M. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
    [CrossRef]
  4. S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
    [CrossRef]
  5. M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
    [CrossRef]
  6. N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” Proc. Combust. Inst., 24, 1621–1628 (1992).
  7. B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
    [CrossRef]
  8. H. Neij, B. Johansson, M. Alden, “Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines,” Comb. Flame 99, 449–457 (1994).
    [CrossRef]
  9. M. Thurber, F. Grisch, B. Kirby, M. Votsmeier, R. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963–4978 (1998).
    [CrossRef]
  10. J. Koch, R. Hanson, “A photophysics model for 3-pentanone PLIF: Temperature, pressure, and excitation wavelength dependences,” paper AIAA 2003-0403, presented at the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 2003 (American Institute of Aeronautics and Astronautics, New York, 2003).
  11. F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
    [CrossRef]
  12. L. Yuen, J. Peters, R. Lucht, “Pressure dependence of laser-induced fluorescence from acetone,” Appl. Opt. 36, 3271–3277 (1997).
    [CrossRef] [PubMed]
  13. M. C. Thurber, R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
    [CrossRef]
  14. D. Hansen, E. Lee, “Radiative and nonradiative-transitions in first excited singlet-state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
    [CrossRef]
  15. J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1959).
    [CrossRef]
  16. A. Halpern, W. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-D6, and hexafluoroacetone in gas phase, in solution, and in neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
    [CrossRef]
  17. A. Gandini, K. Kutschke, “Primary process in photolysis of hexafluoroacetone vapour. 2. Fluorescence and phosphorescence,” Proc. Roy. Soc. A 306, 511–528 (1968).
    [CrossRef]
  18. J. Eastman, “Quantitative spectrofluorimetry-fluorescence quantum yield of quinine sulfate,” Photochem. Photobio. 6, 55–72 (1967).
    [CrossRef]
  19. G. Almy, P. Gillette, “The quantum yield of diacetyl fluorescence,” J. Chem. Phys. 11, 188–195 (1943).
    [CrossRef]
  20. P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN concentration in flames by laser-induced saturated fluorescence,” Comb. Flame 34, 253–264 (1979).
    [CrossRef]
  21. J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
    [CrossRef]
  22. W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).
  23. J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).
  24. R. Miles, W. Lempert, J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Tech. 12, R33–R51 (2001).
    [CrossRef]
  25. H. Naus, W. Ubachs, “Experimental verification of Rayleigh scattering cross sections,” Opt. Lett. 25, 347–349 (2000).
    [CrossRef]
  26. U. Griesmann, J. Burnett, “Refractivity of nitrogen gas in the vacuum ultraviolet,” Opt. Lett. 24, 1699–1701 (1999).
    [CrossRef]
  27. J. D. Koch, R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319–324 (2003).
    [CrossRef]
  28. W. Reckers, Y. Gu, E. Rothe, H. Voges, “Rayleigh scattering of excimer laser light from some simple molecules at 193 nm and 248 nm: the effect of polarization upon imaging diagnostics,” Appl. Spectrosc. 51, 1012–1016 (1997).
    [CrossRef]
  29. G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
    [CrossRef]
  30. R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
    [CrossRef]
  31. F. Ossler, M. Alden, “Measurements of picosecond laser-induced fluorescence from gas-phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
    [CrossRef]

2003

J. D. Koch, R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319–324 (2003).
[CrossRef]

2002

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

2001

R. Miles, W. Lempert, J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Tech. 12, R33–R51 (2001).
[CrossRef]

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

2000

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

H. Naus, W. Ubachs, “Experimental verification of Rayleigh scattering cross sections,” Opt. Lett. 25, 347–349 (2000).
[CrossRef]

1999

U. Griesmann, J. Burnett, “Refractivity of nitrogen gas in the vacuum ultraviolet,” Opt. Lett. 24, 1699–1701 (1999).
[CrossRef]

M. C. Thurber, R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

1998

M. Thurber, F. Grisch, B. Kirby, M. Votsmeier, R. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963–4978 (1998).
[CrossRef]

S. Smith, M. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

1997

1996

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

1994

B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

H. Neij, B. Johansson, M. Alden, “Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines,” Comb. Flame 99, 449–457 (1994).
[CrossRef]

1992

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” Proc. Combust. Inst., 24, 1621–1628 (1992).

A. Lozano, B. Yip, R. Hanson, “Acetone—a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

1985

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

1984

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

1979

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN concentration in flames by laser-induced saturated fluorescence,” Comb. Flame 34, 253–264 (1979).
[CrossRef]

1975

D. Hansen, E. Lee, “Radiative and nonradiative-transitions in first excited singlet-state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

1971

A. Halpern, W. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-D6, and hexafluoroacetone in gas phase, in solution, and in neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

1968

A. Gandini, K. Kutschke, “Primary process in photolysis of hexafluoroacetone vapour. 2. Fluorescence and phosphorescence,” Proc. Roy. Soc. A 306, 511–528 (1968).
[CrossRef]

1967

J. Eastman, “Quantitative spectrofluorimetry-fluorescence quantum yield of quinine sulfate,” Photochem. Photobio. 6, 55–72 (1967).
[CrossRef]

1959

J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1959).
[CrossRef]

1943

G. Almy, P. Gillette, “The quantum yield of diacetyl fluorescence,” J. Chem. Phys. 11, 188–195 (1943).
[CrossRef]

Alden, M.

F. Ossler, M. Alden, “Measurements of picosecond laser-induced fluorescence from gas-phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

H. Neij, B. Johansson, M. Alden, “Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines,” Comb. Flame 99, 449–457 (1994).
[CrossRef]

Almy, G.

G. Almy, P. Gillette, “The quantum yield of diacetyl fluorescence,” J. Chem. Phys. 11, 188–195 (1943).
[CrossRef]

Bonczyk, P. A.

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN concentration in flames by laser-induced saturated fluorescence,” Comb. Flame 34, 253–264 (1979).
[CrossRef]

Burnett, J.

Copeland, R. A.

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

Crosley, D. R.

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

Dreier, T.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Eastman, J.

J. Eastman, “Quantitative spectrofluorimetry-fluorescence quantum yield of quinine sulfate,” Photochem. Photobio. 6, 55–72 (1967).
[CrossRef]

Einecke, S.

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Forkey, J.

R. Miles, W. Lempert, J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Tech. 12, R33–R51 (2001).
[CrossRef]

Gandini, A.

A. Gandini, K. Kutschke, “Primary process in photolysis of hexafluoroacetone vapour. 2. Fluorescence and phosphorescence,” Proc. Roy. Soc. A 306, 511–528 (1968).
[CrossRef]

Gillette, P.

G. Almy, P. Gillette, “The quantum yield of diacetyl fluorescence,” J. Chem. Phys. 11, 188–195 (1943).
[CrossRef]

Greenblatt, G. D.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” Proc. Combust. Inst., 24, 1621–1628 (1992).

Griesmann, U.

Grisch, F.

Großmann, F.

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Gu, Y.

Haas, Y.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Halpern, A.

A. Halpern, W. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-D6, and hexafluoroacetone in gas phase, in solution, and in neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

Hansen, D.

D. Hansen, E. Lee, “Radiative and nonradiative-transitions in first excited singlet-state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

Hanson, R.

M. Thurber, F. Grisch, B. Kirby, M. Votsmeier, R. Hanson, “Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics,” Appl. Opt. 37, 4963–4978 (1998).
[CrossRef]

M. Thurber, F. Grisch, R. Hanson, “Temperature imaging with single- and dual-wavelength acetone planar laser-induced fluorescence,” Opt. Lett. 22, 251–253 (1997).
[CrossRef] [PubMed]

B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. Hanson, “Acetone—a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

J. Koch, R. Hanson, “A photophysics model for 3-pentanone PLIF: Temperature, pressure, and excitation wavelength dependences,” paper AIAA 2003-0403, presented at the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 2003 (American Institute of Aeronautics and Astronautics, New York, 2003).

Hanson, R. K.

J. D. Koch, R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319–324 (2003).
[CrossRef]

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

M. C. Thurber, R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

Heicklen, J.

J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1959).
[CrossRef]

Jeffries, J. B.

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

Johansson, B.

H. Neij, B. Johansson, M. Alden, “Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines,” Comb. Flame 99, 449–457 (1994).
[CrossRef]

Juchmann, W.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Kirby, B.

Klein Douwel, R. J. H.

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

Koch, J.

J. Koch, R. Hanson, “A photophysics model for 3-pentanone PLIF: Temperature, pressure, and excitation wavelength dependences,” paper AIAA 2003-0403, presented at the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 2003 (American Institute of Aeronautics and Astronautics, New York, 2003).

Koch, J. D.

J. D. Koch, R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319–324 (2003).
[CrossRef]

Kutschke, K.

A. Gandini, K. Kutschke, “Primary process in photolysis of hexafluoroacetone vapour. 2. Fluorescence and phosphorescence,” Proc. Roy. Soc. A 306, 511–528 (1968).
[CrossRef]

Latzel, H.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Lee, E.

D. Hansen, E. Lee, “Radiative and nonradiative-transitions in first excited singlet-state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

Lempert, W.

R. Miles, W. Lempert, J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Tech. 12, R33–R51 (2001).
[CrossRef]

Leung, K. M.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Lindstedt, R. P.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Lozano, A.

B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. Hanson, “Acetone—a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Lucht, R.

Luque, J.

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Miles, R.

R. Miles, W. Lempert, J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Tech. 12, R33–R51 (2001).
[CrossRef]

Miller, M.

B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

Monkhouse, P. B.

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Mungal, M.

S. Smith, M. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

Naus, H.

Neij, H.

H. Neij, B. Johansson, M. Alden, “Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines,” Comb. Flame 99, 449–457 (1994).
[CrossRef]

Ossler, F.

F. Ossler, M. Alden, “Measurements of picosecond laser-induced fluorescence from gas-phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Peiter, G.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Peters, J.

Reckers, W.

Ridder, M.

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Rothe, E.

Ruhman, S.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

Schulz, C.

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

Shin, D. I.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Shirley, J. A.

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN concentration in flames by laser-induced saturated fluorescence,” Comb. Flame 34, 253–264 (1979).
[CrossRef]

Sick, V.

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Smith, P.

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

Smith, S.

S. Smith, M. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” Proc. Combust. Inst., 24, 1621–1628 (1992).

Thurber, M.

Thurber, M. C.

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

M. C. Thurber, R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

Ubachs, W.

Voges, H.

Volpp, H. R.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Votsmeier, M.

Ware, W.

A. Halpern, W. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-D6, and hexafluoroacetone in gas phase, in solution, and in neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

Wolfrum, J.

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

Yip, B.

B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

A. Lozano, B. Yip, R. Hanson, “Acetone—a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

Yuen, L.

Appl. Opt.

Appl. Phys. B

M. C. Thurber, R. K. Hanson, “Pressure and composition dependences of acetone laser-induced fluorescence with excitation at 248, 266, and 308 nm,” Appl. Phys. B 69, 229–240 (1999).
[CrossRef]

F. Großmann, P. B. Monkhouse, M. Ridder, V. Sick, J. Wolfrum, “Temperature and pressure dependences of the laser-induced fluorescence of gas-phase acetone and 3-pentanone,” Appl. Phys. B 62, 249–253 (1996).
[CrossRef]

S. Einecke, C. Schulz, V. Sick, “Measurement of temperature, fuel concentration and equivalence ratio fields using tracer LIF in IC engine combustion,” Appl. Phys. B 71, 717–723 (2000).
[CrossRef]

J. Luque, R. J. H. Klein Douwel, J. B. Jeffries, P. Smith, D. R. Crosley, “Quantitative laser-induced fluorescence of CH in atmospheric pressure flames,” Appl. Phys. B 75, 779–790 (2002).

J. D. Koch, R. K. Hanson, “Temperature and excitation wavelength dependencies of 3-pentanone absorption and fluorescence for PLIF applications,” Appl. Phys. B 76, 319–324 (2003).
[CrossRef]

J. Luque, D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

F. Ossler, M. Alden, “Measurements of picosecond laser-induced fluorescence from gas-phase 3-pentanone and acetone: implications to combustion diagnostics,” Appl. Phys. B 64, 493–502 (1997).
[CrossRef]

Appl. Spectrosc.

Chem. Phys. Lett.

G. D. Greenblatt, S. Ruhman, Y. Haas, “Fluorescence decay kinetics of acetone vapour at low pressures,” Chem. Phys. Lett. 112, 200–206 (1984).
[CrossRef]

R. A. Copeland, D. R. Crosley, “Radiative, collisional and dissociative processes in triplet acetone,” Chem. Phys. Lett. 115, 362–368 (1985).
[CrossRef]

Comb. Flame

P. A. Bonczyk, J. A. Shirley, “Measurement of CH and CN concentration in flames by laser-induced saturated fluorescence,” Comb. Flame 34, 253–264 (1979).
[CrossRef]

H. Neij, B. Johansson, M. Alden, “Development and demonstration of 2D-LIF for studies of mixture preparation in SI engines,” Comb. Flame 99, 449–457 (1994).
[CrossRef]

Exp. Fluids

M. C. Thurber, R. K. Hanson, “Simultaneous imaging of temperature and mole fraction using acetone planar laser-induced fluorescence,” Exp. Fluids 30, 93–101 (2001).
[CrossRef]

A. Lozano, B. Yip, R. Hanson, “Acetone—a tracer for concentration measurements in gaseous flows by planar laser-induced fluorescence,” Exp. Fluids 13, 369–376 (1992).
[CrossRef]

B. Yip, M. Miller, A. Lozano, R. Hanson, “A combined OH/acetone planar laser-induced fluorescence imaging technique for visualizing combusting flows,” Exp. Fluids 17, 330–336 (1994).
[CrossRef]

J. Am. Chem. Soc.

J. Heicklen, “The fluorescence and phosphorescence of biacetyl vapor and acetone vapor,” J. Am. Chem. Soc. 81, 3863–3866 (1959).
[CrossRef]

J. Chem. Phys.

A. Halpern, W. Ware, “Excited singlet state radiative and nonradiative transition probabilities for acetone, acetone-D6, and hexafluoroacetone in gas phase, in solution, and in neat liquid,” J. Chem. Phys. 54, 1271–1276 (1971).
[CrossRef]

G. Almy, P. Gillette, “The quantum yield of diacetyl fluorescence,” J. Chem. Phys. 11, 188–195 (1943).
[CrossRef]

D. Hansen, E. Lee, “Radiative and nonradiative-transitions in first excited singlet-state of symmetrical methyl-substituted acetones,” J. Chem. Phys. 62, 183–189 (1975).
[CrossRef]

J. Fluid Mech.

S. Smith, M. Mungal, “Mixing, structure and scaling of the jet in crossflow,” J. Fluid Mech. 357, 83–122 (1998).
[CrossRef]

Meas. Sci. Tech.

R. Miles, W. Lempert, J. Forkey, “Laser Rayleigh scattering,” Meas. Sci. Tech. 12, R33–R51 (2001).
[CrossRef]

Opt. Lett.

Photochem. Photobio.

J. Eastman, “Quantitative spectrofluorimetry-fluorescence quantum yield of quinine sulfate,” Photochem. Photobio. 6, 55–72 (1967).
[CrossRef]

Proc. Combust. Inst.

N. P. Tait, D. A. Greenhalgh, “2D laser induced fluorescence imaging of parent fuel fraction in nonpremixed combustion,” Proc. Combust. Inst., 24, 1621–1628 (1992).

W. Juchmann, H. Latzel, D. I. Shin, G. Peiter, T. Dreier, H. R. Volpp, J. Wolfrum, R. P. Lindstedt, K. M. Leung, “Absolute radical concentration measurements and modeling of low-pressure CH4/O2/NO flames,” Proc. Combust. Inst. 27, 469–476 (1998).

Proc. Roy. Soc. A

A. Gandini, K. Kutschke, “Primary process in photolysis of hexafluoroacetone vapour. 2. Fluorescence and phosphorescence,” Proc. Roy. Soc. A 306, 511–528 (1968).
[CrossRef]

Other

J. Koch, R. Hanson, “A photophysics model for 3-pentanone PLIF: Temperature, pressure, and excitation wavelength dependences,” paper AIAA 2003-0403, presented at the 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 6–9 January 2003 (American Institute of Aeronautics and Astronautics, New York, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of relative measurements leading to two published values of acetone fluorescence quantum yield. Authors measured the behavior of their chemical using the chemical of the previous work as a fluorescence standard.

Fig. 2
Fig. 2

Experimental setup for measuring fluorescence quantum yields with respect to Rayleigh signals.

Fig. 3
Fig. 3

Relative spectral response of the detection system measured with respect to a calibrated tungsten lamp and an Ar miniarc plasma. Note: Standard lamp data is often expressed as W/(cm2 sr nm) and must be converted to photons/(s cm2 sr nm) to be used as a standard for ICCDs whose output is proportional to the number of detected photons.

Fig. 4
Fig. 4

Example of measured and corrected 3-pentanone fluorescence spectra excited with 248-nm laser light in 1 bar of nitrogen with comparison with background levels and a reference spectrum. The reference spectrum allowed us to calculate the fraction of the emission that was not collected and thus make a correction.

Fig. 5
Fig. 5

Example of integrated Rayleigh (from 244 to 252 nm) and fluorescence (from 300 to 490 nm) signals versus pressure.

Fig. 6
Fig. 6

(a) Relative acetone ϕ(λ, 296 K, ∼20 mbar) and comparison with Hansen and Lee.14 (b) Relative 3-pentanone ϕ(λ, 296 K, ∼20 mbar) and comparison with Hansen and Lee.14

Fig. 7
Fig. 7

(a) Acetone fluorescence quantum yield as a function of pressure and excitation wavelength. (b) 3-pentanone fluorescence quantum yield as a function of pressure and excitation wavelength.

Fig. 8
Fig. 8

Relative comparison of acetone fluorescence quantum yield with model predictions (Lozano et al.1 and Thurber and Hanson13).

Fig. 9
Fig. 9

Comparison of acetone data measured in this study with the data and model of Thurber and Hanson13 with a value of k f = 3 × 105s-1.

Tables (1)

Tables Icon

Table 1 Comparison of Measured Fluorescence Quantum Yields for Acetone

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

SLIF=IlaserAhνNabslσabsϕΩ4πRLIF,
RLIF= LIFspectrum Rλ×SLIFdλLIFspectrum SLIFdλ,
SRay=IlaserAhνNl dσdΩ90°ΩRRay,
dσdΩ90°= 4π2λ43+7FK10n-1N2,
FK=1.034+ 3.17×10-12λ2.
n-1= 1.96622086-1000/λ2+0.02745133.86-1000/λ2.
SLIFSRay=ϕ NketoneNN2σabsdσ/dΩ|90°4πIlaserLIFIlaserRayRSRLIFRSRRay.
RSRλ=Rλ/Rmax,
ϕ= SLIF/NketoneIlaserLIFSRay/(NN2IlaserRayRSRRayRSRLIFdσ/dΩ|90°4πσabs.
ϕ= kfi ki=kfτ,

Metrics