Abstract

In the upper layer of the global ocean, 2082 in situ chlorophyll biomass values 〈Chl〉 are retrieved by concurrent satellite-derived inherent optical properties (IOP). It is found that (1) the phytoplankton absorption coefficient IOP alone does not provide satisfactory 〈Chl〉 retrieval; (2) the chromophoric dissolved organic matter (CDOM) absorption coefficient IOP must also be used to obtain satisfactory retrieval through 〈Chl〉 ∝ a ph + pa CDOM where p is a constant and a ph and a CDOM are, respectively, the phytoplankton and CDOM absorption coefficients; (3) the IOP-based 〈Chl〉 retrieval performance is comparable to standard satellite reflectance ratio retrievals (that have CDOM absorption intrinsically embedded within them); (4) inclusion of the total backscattering coefficient IOP does not contribute significantly to 〈Chl〉 retrieval; and (5) the new IOP-based algorithm may provide the possibility for future research to establish the actual role of extracellular CDOM from all sources in the intracellular production of chlorophyll biomass.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
    [CrossRef]
  2. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and the coastal zone color scanner estimates,” Appl. Opt. 22, 20–36 (1983).
    [CrossRef] [PubMed]
  3. M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
    [CrossRef]
  4. S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997).
    [CrossRef]
  5. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
    [CrossRef]
  6. R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
    [CrossRef]
  7. A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
    [CrossRef]
  8. N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789–22803 (1993).
    [CrossRef]
  9. F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
    [CrossRef]
  10. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
    [CrossRef]
  11. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
    [CrossRef]
  12. F. E. Hoge, P. E. Lyon, “Spectral parameters of inherent optical property models: feasibility of satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
    [CrossRef]
  13. F. E. Hoge, P. E. Lyon, “Satellite observation of chromophoric dissolved organic matter (CDOM) variability in the wake of hurricanes and typhoons,” Geophys. Res. Lett. 29, doi:10.1029/2002GL015114 (2002).
    [CrossRef]
  14. F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106C, 31129–31138 (2001).
    [CrossRef]
  15. Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996).
    [CrossRef] [PubMed]
  16. M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
    [CrossRef]

2003 (1)

R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
[CrossRef]

2002 (2)

F. E. Hoge, P. E. Lyon, “Satellite observation of chromophoric dissolved organic matter (CDOM) variability in the wake of hurricanes and typhoons,” Geophys. Res. Lett. 29, doi:10.1029/2002GL015114 (2002).
[CrossRef]

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

2001 (1)

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106C, 31129–31138 (2001).
[CrossRef]

1999 (4)

1998 (1)

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

1997 (1)

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997).
[CrossRef]

1996 (3)

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996).
[CrossRef] [PubMed]

1995 (1)

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

1993 (1)

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789–22803 (1993).
[CrossRef]

1983 (1)

Babin, M.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Behrenfeld, M. J.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Blough, N. V.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Bruce, E. J.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Carder, K. L.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996).
[CrossRef] [PubMed]

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
[CrossRef]

Chomko, R. M.

R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
[CrossRef]

Clark, D. K.

Claustre, H.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

DeGrandpre, M. D.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Evans, R. H.

Garver, S. A.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997).
[CrossRef]

Gordon, H. R.

R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
[CrossRef]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and the coastal zone color scanner estimates,” Appl. Opt. 22, 20–36 (1983).
[CrossRef] [PubMed]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
[CrossRef]

Hoepffner, N.

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789–22803 (1993).
[CrossRef]

Hoge, F. E.

F. E. Hoge, P. E. Lyon, “Satellite observation of chromophoric dissolved organic matter (CDOM) variability in the wake of hurricanes and typhoons,” Geophys. Res. Lett. 29, doi:10.1029/2002GL015114 (2002).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106C, 31129–31138 (2001).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, P. E. Lyon, “Spectral parameters of inherent optical property models: feasibility of satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Hooker, S. B.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Kahru, M.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
[CrossRef]

Lee, Z. P.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, J. Marra, R. G. Steward, M. J. Perry, “Estimating primary production at depth from remote sensing,” Appl. Opt. 35, 463–474 (1996).
[CrossRef] [PubMed]

Lyon, P. E.

F. E. Hoge, P. E. Lyon, “Satellite observation of chromophoric dissolved organic matter (CDOM) variability in the wake of hurricanes and typhoons,” Geophys. Res. Lett. 29, doi:10.1029/2002GL015114 (2002).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106C, 31129–31138 (2001).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of the absorption coefficient of phytoplankton phycoerythrin pigment: theory and feasibility status,” Appl. Opt. 38, 7431–7441 (1999).
[CrossRef]

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Satellite retrieval of inherent optical properties by inversion of an oceanic radiance model: a preliminary algorithm,” Appl. Opt. 38, 495–504 (1999).
[CrossRef]

F. E. Hoge, P. E. Lyon, “Spectral parameters of inherent optical property models: feasibility of satellite retrieval by matrix inversion of an oceanic radiance model,” Appl. Opt. 38, 1657–1662 (1999).
[CrossRef]

F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

Maranon, E.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Maritorena, S.

R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Marra, J.

McClain, C.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Mitchell, B. G.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Morel, A.

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

Nelson, R. K.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

O’Reilly, J. E.

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

Perry, M. J.

Sathyendranath, S.

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789–22803 (1993).
[CrossRef]

Siegel, D.

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Siegel, D. A.

R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997).
[CrossRef]

Steward, R. G.

Swift, R. N.

Vodacek, A.

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

Wright, C. W.

Yungel, J. K.

Appl. Opt. (5)

Geophys. Res. Lett. (1)

F. E. Hoge, P. E. Lyon, “Satellite observation of chromophoric dissolved organic matter (CDOM) variability in the wake of hurricanes and typhoons,” Geophys. Res. Lett. 29, doi:10.1029/2002GL015114 (2002).
[CrossRef]

J. Geophys. Res. (7)

F. E. Hoge, C. W. Wright, P. E. Lyon, R. N. Swift, J. K. Yungel, “Inherent optical properties imagery of the western North Atlantic Ocean: horizontal spatial variability of the upper mixed layer,” J. Geophys. Res. 106C, 31129–31138 (2001).
[CrossRef]

M. D. DeGrandpre, A. Vodacek, R. K. Nelson, E. J. Bruce, N. V. Blough, “Seasonal seawater properties of the U.S. Middle Atlantic Bight,” J. Geophys. Res. 101, 22727–22736 (1996).
[CrossRef]

S. A. Garver, D. A. Siegel, “Inherent optical property inversion of ocean spectra and its biogeochemical interpretation. 1. Time series from the Sargasso Sea,” J. Geophys. Res. 102, 18607–18625 (1997).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization,” J. Geophys. Res. 100, 13321–13332 (1995).
[CrossRef]

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22789–22803 (1993).
[CrossRef]

F. E. Hoge, P. E. Lyon, “Satellite retrieval of inherent optical properties by linear matrix inversion of oceanic radiance models: an analysis of model and radiance measurement errors,” J. Geophys. Res. 101, 16631–16648 (1996).
[CrossRef]

J. E. O’Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, C. McClain, “Ocean color chlorophyll algorithms for SeaWiFS,” J. Geophys. Res. 103, 24937–24953 (1998).
[CrossRef]

J. Geophys. Res. (Oceans) (1)

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, D. Kamykowski, “Semianalytic Moderate-Resolution Imaging Spectrometer algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. (Oceans) 104, 5403–5421 (1999).
[CrossRef]

Mar. Ecol. Prog. Ser. (1)

M. J. Behrenfeld, E. Maranon, D. Siegel, S. B. Hooker, “Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production,” Mar. Ecol. Prog. Ser. 228, 103–117 (2002).
[CrossRef]

Remote Sens. Environ. (1)

R. M. Chomko, H. R. Gordon, S. Maritorena, D. A. Siegel, “Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation,” Remote Sens. Environ. 84, 208–220 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Global distribution of the N = 2082 in situ chlorophyll bomass values, color coded into eight regions. (b) Retrieval of the 2082 in situ chlorophyll [〈Chl〉 = f(a ph,a CDOM)] by the IOP-based method given in Eqs. (11) and (12). (c) Retrieval of the 2082 in situ chlorophyll values with the standard SeaWiFS OC4v4 algorithm. Comparison of the correlation coefficients in (b) and (c) shows that the absorption IOP-based retirevals and the SeaWiFS standard OC4v4 algorithmic retrievals are quite comparable.

Fig. 2
Fig. 2

Scatter plot of IOP-based retrievals versus standard SeaWiFS OC4v4 retrievals [OC4v4 versus f(a ph,a CDOM)] for 2082 in situ chlorophyll values in Fig. 1 showing substantial agreement for the two algorithms.

Fig. 3
Fig. 3

Phytoplankton and CDOM absorption-induced chlorophyll biomass variability generated by use of the IOP-based algorithm in Eqs. (11) and (12).

Fig. 4
Fig. 4

Correlation of in situ chlorophyll biomass versus SeaWiFS-retrieved IOPs: (a) total constituent backscattering coefficient [〈Chl〉 = f(b bt)], (b) phytoplankton absorption coefficient [〈Chl〉 = f(a ph)], (c) CDOM absorption coefficient, [〈Chl〉 = f(a CDOM)], (d) both phytoplankton and CDOM absorption coefficients [〈Chl〉 = f(a ph,a CDOM)] combined as in Eqs. (11) and (12). The latter IOP-based chlorophyll retrievals compare favorably with the empirical SeaWiFS OC4v4 chlorophyll biomass algorithm as shown in Figs. 1(b) and 1(c).

Tables (1)

Tables Icon

Table 1 Algorithm Constants q0, q1, q2, q3, q4, q5, and p at 412 nm for Eqs. (11) and (12)

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

aph  Chl.
apha*Chl,
aphAChlB,
Chl=aphA1B,
Chl  reflectance ratios.
Chlconstant×awater443+aph443+aCDOM443awater555+aph555+aCDOM555.
Chlconstant×awater443+aph443+a443CDOMC1awater443+C2aph443+0.15 a443CDOM.
Chl  aph+aCDOM.
reflectance ratios  aph+aCDOM.
Chl=A1aph+A2aCDOMA31B.
Chl=aph+p aCDOMA1B.
lnChl=1Blnaph+p aCDOM+lnAB.
Chl=expq5x5+q4x4+q3x3+q2x2+q1x+q0,
xlnaph+paCDOM1/2.
Chlnorm=0.036+0.3 exp-1.1 Ig.
Chloceanic photoaccexp-sEdZ,

Metrics