Abstract

An innovative pump concept for diode-pumped, solid-state lasers is introduced as an example for an Er:YSGG laser, permitting its miniaturization. Embedded in a multireflective pump cavity, the laser crystal is simultaneously side and end pumped. Specially calculated and shaped deflecting optics distribute the coaxially input pumping light homogeneously over the lateral surface of the crystal, therefore reducing the size of the laser head, including the optical resonator, to a length of 27.5 mm and an outside diameter of 12.5 mm. The differential efficiency achieved is between 8.7% and 24%. The laser emits energy of 15.7 mJ at an absolute efficiency of 9.1% and a repetition rate of 4 Hz.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
    [CrossRef]
  2. A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
    [CrossRef]
  3. K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
    [CrossRef]
  4. B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996).
    [CrossRef]
  5. P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988).
    [CrossRef]
  6. G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
    [CrossRef]
  7. B. J. Dinerman, P. F. Moulton, “3-μm cw laser operation in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19, 1143–1145 (1994).
    [CrossRef] [PubMed]
  8. S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990).
    [CrossRef]
  9. R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
    [CrossRef]
  10. T. Jensen, V. Ostroumov, G. Huber, “Upconversion processes in Er3+:YSGG and diode pumped laser experiments at 2.8 μm,” in Advanced Solid-State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 366–370.
  11. R. S. Quimby, W. J. Miniscalco, “Continuous-wave lasing on a self-terminating transition,” Appl. Opt. 28, 14–16 (1989).
    [CrossRef] [PubMed]
  12. R. C. Stoneman, L. Esterowitz, “Efficient resonantly pumped 2.8-μm Er3+:GSGG laser,” Opt. Lett. 17, 816–818 (1992).
    [CrossRef] [PubMed]
  13. D.-W. Chen, C. L. Fincher, T. S. Rose, F. L. Vernon, R. A. Fields, “Diode-pumped 1-W continuous-wave Er:YAG 3-μm laser,” Opt. Lett. 24, 385–387 (1999).
    [CrossRef]
  14. M. Pollnau, S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
    [CrossRef]
  15. C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
    [CrossRef]
  16. M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
    [CrossRef]
  17. T. Jensen, A. Diening, G. Huber, B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
    [CrossRef] [PubMed]
  18. S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.
  19. T. Jensen, G. Huber, K. Petermann, “Quasi-cw diode-pumped 2.8-μm laser operation of Er3+-doped garnets,” in Advanced Solid-State Lasers, S. A. Payne, C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 306–308.
  20. A. Diening, G. Huber, “Small-size high-power diode-pumped erbium 3-μm laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), p. 565.
  21. C. E. Hamilton, R. J. Beach, S. B. Sutton, L. H. Furu, W. F. Krupke, “1-W average power levels and tunability from a diode-pumped 2.94-μm Er:YAG oscillator,” Opt. Lett. 19, 1627–1629 (1994).
    [CrossRef] [PubMed]
  22. C. Ziolek, H. Ernst, G. F. Will, H. Lubatschowski, H. Welling, W. Ertmer, “High-repetition-rate, high-average-power, diode-pumped 2.94-μm Er:YAG laser,” Opt. Lett. 26, 599–601 (2001).
    [CrossRef]
  23. LAS-CAD GmbH Munich, Lascad 2.7 Manual (LAS-CAD GmbH, Munich, Germany, April2002), p. 18.
  24. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 406–412.
    [CrossRef]
  25. Molecular Technology, “Materials for solid-state lasers,” Molecular Technology GmbH, http://www.mt-berlin.com/charts/chart_03.htm (September2003).
  26. Laser Materials Cooperation, “Product brochure,” http://www.lasermaterials.com (September2003).
  27. VLOC, “Product brochure,” subsidiary of II-VI Inc., http://www.vloc.com/pdfs/yagbrochure.pdf (September2003).
  28. B. J. Dinerman, J. Harrison, P. F. Moulton, “Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals,” in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 168–170.
  29. T. Jensen, “Upconversion-Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays,” Ph.D. dissertation (Institute of Laser Physics, University of Hamburg, Hamburg, Germany, 1996).

2002 (1)

M. Pollnau, S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[CrossRef]

2001 (1)

1999 (1)

1997 (1)

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

1996 (3)

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

T. Jensen, A. Diening, G. Huber, B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
[CrossRef] [PubMed]

B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996).
[CrossRef]

1994 (2)

1992 (2)

R. C. Stoneman, L. Esterowitz, “Efficient resonantly pumped 2.8-μm Er3+:GSGG laser,” Opt. Lett. 17, 816–818 (1992).
[CrossRef] [PubMed]

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

1990 (1)

S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990).
[CrossRef]

1989 (1)

1988 (1)

P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988).
[CrossRef]

1987 (1)

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[CrossRef]

1983 (1)

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

1977 (1)

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

1975 (1)

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Allen, R.

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[CrossRef]

Bagdasarov, K. S.

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

Beach, R. J.

Butaeva, T. I.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

Chai, B. H. T.

Chen, D.-W.

Diening, A.

T. Jensen, A. Diening, G. Huber, B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
[CrossRef] [PubMed]

A. Diening, G. Huber, “Small-size high-power diode-pumped erbium 3-μm laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), p. 565.

Dinerman, B. J.

B. J. Dinerman, P. F. Moulton, “3-μm cw laser operation in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19, 1143–1145 (1994).
[CrossRef] [PubMed]

B. J. Dinerman, J. Harrison, P. F. Moulton, “Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals,” in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 168–170.

Ernst, H.

Ertmer, W.

Esterowitz, L.

R. C. Stoneman, L. Esterowitz, “Efficient resonantly pumped 2.8-μm Er3+:GSGG laser,” Opt. Lett. 17, 816–818 (1992).
[CrossRef] [PubMed]

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[CrossRef]

Fedorov, V. A.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

Fields, R. A.

Fincher, C. L.

Furu, L. H.

Ghisler, C.

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

Halldorsson, T.

S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.

Hamilton, C. E.

Harrison, J.

B. J. Dinerman, J. Harrison, P. F. Moulton, “Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals,” in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 168–170.

Huber, G.

T. Jensen, A. Diening, G. Huber, B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
[CrossRef] [PubMed]

T. Jensen, V. Ostroumov, G. Huber, “Upconversion processes in Er3+:YSGG and diode pumped laser experiments at 2.8 μm,” in Advanced Solid-State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 366–370.

A. Diening, G. Huber, “Small-size high-power diode-pumped erbium 3-μm laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), p. 565.

T. Jensen, G. Huber, K. Petermann, “Quasi-cw diode-pumped 2.8-μm laser operation of Er3+-doped garnets,” in Advanced Solid-State Lasers, S. A. Payne, C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 306–308.

Hulliger, J.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Jackson, S. D.

M. Pollnau, S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[CrossRef]

Jensen, T.

T. Jensen, A. Diening, G. Huber, B. H. T. Chai, “Investigation of diode-pumped 2.8-μm Er:LiYF4 lasers with various doping levels,” Opt. Lett. 21, 585–587 (1996).
[CrossRef] [PubMed]

T. Jensen, G. Huber, K. Petermann, “Quasi-cw diode-pumped 2.8-μm laser operation of Er3+-doped garnets,” in Advanced Solid-State Lasers, S. A. Payne, C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 306–308.

T. Jensen, V. Ostroumov, G. Huber, “Upconversion processes in Er3+:YSGG and diode pumped laser experiments at 2.8 μm,” in Advanced Solid-State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 366–370.

T. Jensen, “Upconversion-Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays,” Ph.D. dissertation (Institute of Laser Physics, University of Hamburg, Hamburg, Germany, 1996).

Kaminskii, A. A.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

Kintz, G. J.

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 406–412.
[CrossRef]

Krupke, W. F.

Kulevskii, L. A.

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Lobachev, V. A.

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

Lubatschowski, H.

Lukac, M.

B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996).
[CrossRef]

Lüthy, W.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990).
[CrossRef]

Lynn, J. G.

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

Majaron, B.

B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996).
[CrossRef]

Manni, J. G.

P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988).
[CrossRef]

Miniscalco, W. J.

Moulton, P. F.

B. J. Dinerman, P. F. Moulton, “3-μm cw laser operation in erbium-doped YSGG, GGG, and YAG,” Opt. Lett. 19, 1143–1145 (1994).
[CrossRef] [PubMed]

P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988).
[CrossRef]

B. J. Dinerman, J. Harrison, P. F. Moulton, “Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals,” in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 168–170.

Murina, T. M.

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Nikolov, S.

S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.

Osiko, V. V.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Ostroumov, V.

T. Jensen, V. Ostroumov, G. Huber, “Upconversion processes in Er3+:YSGG and diode pumped laser experiments at 2.8 μm,” in Advanced Solid-State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 366–370.

Petermann, K.

T. Jensen, G. Huber, K. Petermann, “Quasi-cw diode-pumped 2.8-μm laser operation of Er3+-doped garnets,” in Advanced Solid-State Lasers, S. A. Payne, C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 306–308.

Petrosyan, A. G.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

Pollnau, M.

M. Pollnau, S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[CrossRef]

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

Prokhorov, A. M.

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Quimby, R. S.

Reithmeier, G.

S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.

Rines, G. A.

P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988).
[CrossRef]

Rogin, P.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Rose, T. S.

Rupnik, T.

B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996).
[CrossRef]

Sarkisov, S. E.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

Savelev, A. D.

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Schmitt, N. P.

S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.

Smirnov, V. V.

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Spring, R.

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

Starikov, B. P.

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Stoneman, R. C.

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

R. C. Stoneman, L. Esterowitz, “Efficient resonantly pumped 2.8-μm Er3+:GSGG laser,” Opt. Lett. 17, 816–818 (1992).
[CrossRef] [PubMed]

Sutton, S. B.

Timoshechkin, M. I.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Vernon, F. L.

Weber, H. P.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990).
[CrossRef]

Welling, H.

Will, G. F.

Wittwer, S.

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

Wüthrich, S.

S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990).
[CrossRef]

Wyss, C.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Zharikov, E. V.

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Zhekov, V. I.

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Ziolek, C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. J. Kintz, R. Allen, L. Esterowitz, “Continuous-wave and pulsed 2.8-μm laser emission from diode-pumped Er3+:LiYF4 at room temperature,” Appl. Phys. Lett. 50, 1553–1555 (1987).
[CrossRef]

IEEE J. Quantum Electron. (5)

B. Majaron, T. Rupnik, M. Lukac, “Temperature and gain dynamics in flashlamp-pumped Er:YAG,” IEEE J. Quantum Electron. 32, 1636–1644 (1996).
[CrossRef]

P. F. Moulton, J. G. Manni, G. A. Rines, “Spectroscopic and laser characteristics of Er,Cr:YSGG,” IEEE J. Quantum Electron. 24, 960–973 (1988).
[CrossRef]

R. C. Stoneman, J. G. Lynn, L. Esterowitz, “Direct upper-state pumping of the 2.8-μm Er3+:YLF laser,” IEEE J. Quantum Electron. 28, 1041–1045 (1992).
[CrossRef]

M. Pollnau, R. Spring, C. Ghisler, S. Wittwer, W. Lüthy, H. P. Weber, “Efficiency of erbium 3-μm crystal and fiber lasers,” IEEE J. Quantum Electron. 32, 657–663 (1996).
[CrossRef]

M. Pollnau, S. D. Jackson, “Energy recycling versus lifetime quenching in erbium-doped 3-μm fiber lasers,” IEEE J. Quantum Electron. 38, 162–169 (2002).
[CrossRef]

J. Appl. Phys. (1)

S. Wüthrich, W. Lüthy, H. P. Weber, “Comparison of YAG:Er and YAlO3:Er laser crystals emitting near 2.9 μm,” J. Appl. Phys. 68, 5467–5471 (1990).
[CrossRef]

Opt. Commun. (1)

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, J. Hulliger, “Emission properties of an optimized 2.8-μm Er3+:YLF laser,” Opt. Commun. 139, 215–218 (1997).
[CrossRef]

Opt. Lett. (6)

Phys. Status Solidi A (1)

A. M. Prokhorov, A. A. Kaminskii, V. V. Osiko, M. I. Timoshechkin, E. V. Zharikov, T. I. Butaeva, S. E. Sarkisov, A. G. Petrosyan, V. A. Fedorov, “Investigations of the 3-μm stimulated emission from Er3+ ions in aluminum garnets at room temperature,” Phys. Status Solidi A 40, K69–K72 (1977).
[CrossRef]

Sov. J. Quantum Electron. (2)

K. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-state emission from a Y3AL5O12:Er3+ laser (λ = 2.94 μm, T = 300 K),” Sov. J. Quantum Electron. 13, 262–263 (1983).
[CrossRef]

E. V. Zharikov, V. I. Zhekov, L. A. Kulevskii, T. M. Murina, V. V. Osiko, A. M. Prokhorov, A. D. Savelev, V. V. Smirnov, B. P. Starikov, M. I. Timoshechkin, “Stimulated emission from Er3+ ions in yttrium aluminum garnet crystals at λ = 2.94 μm,” Sov. J. Quantum Electron. 4, 1039–1040 (1975).
[CrossRef]

Other (11)

T. Jensen, V. Ostroumov, G. Huber, “Upconversion processes in Er3+:YSGG and diode pumped laser experiments at 2.8 μm,” in Advanced Solid-State Lasers, B. H. T. Chai, S. A. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 366–370.

S. Nikolov, N. P. Schmitt, G. Reithmeier, T. Halldorsson, “Fiber-coupled diode-pumped Er:YSGG laser at 2.8 μm,” in Lasers in Medicine, Lectures at the 10th Conference of the German Society of Laser Medicine and at the 12th International Congress at Laser 95 in Munich (Springer-Verlag, Berlin, 1996), pp. 544–547.

T. Jensen, G. Huber, K. Petermann, “Quasi-cw diode-pumped 2.8-μm laser operation of Er3+-doped garnets,” in Advanced Solid-State Lasers, S. A. Payne, C. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 306–308.

A. Diening, G. Huber, “Small-size high-power diode-pumped erbium 3-μm laser,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), p. 565.

LAS-CAD GmbH Munich, Lascad 2.7 Manual (LAS-CAD GmbH, Munich, Germany, April2002), p. 18.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), pp. 406–412.
[CrossRef]

Molecular Technology, “Materials for solid-state lasers,” Molecular Technology GmbH, http://www.mt-berlin.com/charts/chart_03.htm (September2003).

Laser Materials Cooperation, “Product brochure,” http://www.lasermaterials.com (September2003).

VLOC, “Product brochure,” subsidiary of II-VI Inc., http://www.vloc.com/pdfs/yagbrochure.pdf (September2003).

B. J. Dinerman, J. Harrison, P. F. Moulton, “Continuous wave and pulsed laser operation at 3 μm in Er3+-doped crystals,” in Advanced Solid-State Lasers, Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 168–170.

T. Jensen, “Upconversion-Prozesse und Wirkungsquerschnitte in Er3+-dotierten 3 μm Fluorid- und Granat-Lasern, gepumpt mit cw und quasi-cw Dioden-Arrays,” Ph.D. dissertation (Institute of Laser Physics, University of Hamburg, Hamburg, Germany, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Light distributions in the crystal and the pump cavity with focal length f FM of the 8.5-mm front mirror: (a) Top, longitudinal section showing the influence of the pump configuration. The oblique path of the light beams is due to the shape of the mirror. Bottom, equidistant cross sections clearly illustrating the 120° arrangement of the optical fibers. (b) Longitudinal section through the pump cavity. The diagram shows the points, black, at which the beams hit the lateral surface of the crystal; gray, the surface of the front FM, and the back mirror BM; the cavity tube C.

Fig. 2
Fig. 2

Schematic structure showing three basic modules: BM, back mirror; C, cavity tube; FM, front mirror. Integrated in the front mirror are the outcoupling mirror of the laser and the device for adjusting the mirror. The laser crystal is located at the center of the multireflective pump cavity.

Fig. 3
Fig. 3

Measurements of laser output energy in different pumping conditions.

Fig. 4
Fig. 4

Example of use: Two miniaturized laser heads and a commercial dental laser applicator are shown. The laser head fixed at the black block is shown with its umbilical. It is possible to embed them into a larger protection tube as is fixed to the commercial laser applicator (gray tube).

Fig. 5
Fig. 5

Size comparison between the multireflective pump cavity and a 1-euro coin. The mirror-adjusting device, the adjusting screws, and the mirror are shown. Part of the inlet for the cooling liquid can be seen in the background.

Tables (3)

Tables Icon

Table 1 Material Data Used for the Simulationsa

Tables Icon

Table 2 Slope Efficiencies of Different Pump Configurations of Diode-Pumped Erbium Lasers Including the Current Systema,b

Tables Icon

Table 3 Pulse Lengths, Repetition Rates, and Peak Powers for Different Authors in Addition to Table 2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

IM := crystal Vrd3r.
nSx,y,z := Epumpi=xn+1nx+1j=yn+1ny+1k=zn+1nz+1 Vi,j,k.
nIG := crystal nSrd3r
nIG := xyz nSx,y,z.
Q := IMnIG.

Metrics