Abstract

We demonstrate a robust method for frequency stabilization of a diode laser by two Doppler-broadened absorption spectra of the cesium D2 line. This technique employs an acousto-optical modulator to generate another frequency component from a diode laser to perform the spectroscopy. The 852-nm diode laser with frequency stabilization at the zero crossing of the error signal showed a peak-to-peak fluctuation of 800 kHz compared with a frequency-stabilized femtosecond laser over a 2-h period. This frequency-locking method is free of modulation and can be applied to frequency discriminators as well as to atomic resonances.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
    [CrossRef]
  2. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  3. R. Balhorn, H. Kunzmann, F. Lebowsky, “Frequency stabilization of internal-mirror helium–neon lasers,” Appl. Opt. 11, 742–744 (1972).
    [CrossRef] [PubMed]
  4. H. Ahn, R.-H. Shu, R. S. Windeler, J.-L. Peng, “Building a frequency-stabilized mode-locked femtosecond laser for optical frequency metrology,” in 2004 Conference on Precision Electromagnetic Measurements Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), pp. 212–213.
    [CrossRef]
  5. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [CrossRef] [PubMed]
  6. C.-M. Wu, J. Lawall, R. D. Deslattes, “Heterodyne interferometer with subatomic periodic nonlinearity,” Appl. Opt. 38, 4089–4094 (1999).
    [CrossRef]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1991 (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

1972 (1)

Ahn, H.

H. Ahn, R.-H. Shu, R. S. Windeler, J.-L. Peng, “Building a frequency-stabilized mode-locked femtosecond laser for optical frequency metrology,” in 2004 Conference on Precision Electromagnetic Measurements Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), pp. 212–213.
[CrossRef]

Balhorn, R.

Corwin, K. L.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Deslattes, R. D.

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Epstein, R. J.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Hand, C. F.

Hollberg, L.

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Kunzmann, H.

Lawall, J.

Lebowsky, F.

Lu, Z.-T.

Peng, J.-L.

H. Ahn, R.-H. Shu, R. S. Windeler, J.-L. Peng, “Building a frequency-stabilized mode-locked femtosecond laser for optical frequency metrology,” in 2004 Conference on Precision Electromagnetic Measurements Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), pp. 212–213.
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Shu, R.-H.

H. Ahn, R.-H. Shu, R. S. Windeler, J.-L. Peng, “Building a frequency-stabilized mode-locked femtosecond laser for optical frequency metrology,” in 2004 Conference on Precision Electromagnetic Measurements Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), pp. 212–213.
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Wieman, C. E.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

H. Ahn, R.-H. Shu, R. S. Windeler, J.-L. Peng, “Building a frequency-stabilized mode-locked femtosecond laser for optical frequency metrology,” in 2004 Conference on Precision Electromagnetic Measurements Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), pp. 212–213.
[CrossRef]

Wu, C.-M.

Appl. Opt. (3)

Rev. Sci. Instrum. (1)

C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[CrossRef] [PubMed]

Other (1)

H. Ahn, R.-H. Shu, R. S. Windeler, J.-L. Peng, “Building a frequency-stabilized mode-locked femtosecond laser for optical frequency metrology,” in 2004 Conference on Precision Electromagnetic Measurements Digest (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2004), pp. 212–213.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The TFDAS technique: A, Doppler-broadened absorption spectrum; B, second Doppler-broadened absorption spectrum with the laser frequency shifted from A C, the difference of A and B, showing the TFDAS error signal.

Fig. 2
Fig. 2

Schematic diagram of the setup for the TFDAS experiment. Part of the laser beam from the 0th order is split for beating with the fs laser comb, which is not shown here. IF, intermediate frequency port of mixer; LO, local oscillator port of mixer.

Fig. 3
Fig. 3

Measured TFDAS signals: (a), (c) measured signals from the photodiodes. One of the signals is inverted. (b) The error signal, the sum of (a) and (c).

Fig. 4
Fig. 4

Measured beat frequency between the frequency-stabilized diode laser and the frequency-stabilized fs laser comb. The peak-to-peak frequency fluctuation is ≈800 kHz.

Metrics