Abstract

Lifetimes of two-color nonvolatile holograms recorded in undoped or in slightly doped near-stoichiometric lithium niobate and tantalate crystals were measured and compared by extrapolation of the high-temperature data. A proton-compensation mechanism dominated the dark decay and yielded similar activation energies, of 1.05 and 1.10 eV, for near-stoichiometric lithium niobate and tantalate crystals, respectively. The lifetime of holograms in lithium tantalate was 1 order of magnitude longer than that in lithium niobate with the same proton concentration, which was consistent with our theoretical estimation. The projected lifetime of two-color holograms in lithium tantalate without observable OH- absorption is longer than 50 years.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  2. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  3. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  4. Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
    [CrossRef]
  5. H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
    [CrossRef]
  6. L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  7. M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
    [CrossRef]
  8. Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
    [CrossRef]
  9. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
    [CrossRef]
  10. O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
    [CrossRef]
  11. K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
    [CrossRef]
  12. K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
    [CrossRef]
  13. H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
    [CrossRef]
  14. M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
    [CrossRef]
  15. K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.
  16. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  17. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
    [CrossRef]
  18. Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
    [CrossRef]
  19. Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
    [CrossRef]
  20. J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
    [CrossRef]
  21. L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
    [CrossRef]
  22. Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
    [CrossRef]
  23. S. Kapphan, A. Breitkopf, “PE-layers and proton diffusion profiles in LiNbO3 investigated with Fourier-IR and second harmonic-generation,” Phys. Status Solidi A 133, 159–166 (1992).
    [CrossRef]
  24. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
    [CrossRef]
  25. D. L. Staebler, J. J. Amodei, “Thermal fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
    [CrossRef]
  26. P. J. Matthews, A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
    [CrossRef]
  27. S. Klauer, M. Wöhlecke, S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
    [CrossRef]
  28. L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
    [CrossRef]
  29. G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
    [CrossRef]

2004 (1)

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

2003 (2)

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
[CrossRef]

2002 (2)

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
[CrossRef]

2001 (1)

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

2000 (1)

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

1998 (3)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

1997 (2)

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
[CrossRef]

1995 (1)

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

1992 (4)

S. Kapphan, A. Breitkopf, “PE-layers and proton diffusion profiles in LiNbO3 investigated with Fourier-IR and second harmonic-generation,” Phys. Status Solidi A 133, 159–166 (1992).
[CrossRef]

P. J. Matthews, A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

S. Klauer, M. Wöhlecke, S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

1991 (2)

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

1990 (1)

L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
[CrossRef]

1985 (1)

H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
[CrossRef]

1981 (1)

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

1974 (1)

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

1973 (1)

J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

1972 (1)

D. L. Staebler, J. J. Amodei, “Thermal fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

1971 (1)

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Adibi, A.

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Akella, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Amodei, J. J.

D. L. Staebler, J. J. Amodei, “Thermal fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Bai, Y. S.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Berben, D.

Bischler, B.

J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Brandle, C. D.

H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
[CrossRef]

Breitkopf, A.

S. Kapphan, A. Breitkopf, “PE-layers and proton diffusion profiles in LiNbO3 investigated with Fourier-IR and second harmonic-generation,” Phys. Status Solidi A 133, 159–166 (1992).
[CrossRef]

Buse, K.

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Capelletti, R.

L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
[CrossRef]

Corradi, G.

K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
[CrossRef]

Ellabban, M.

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Fally, M.

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Furukawa, Y.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

Gallagher, P. K.

H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Guenther, H.

Hartwig, U.

Hatano, H.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

Hayashi, T.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Herrington, J. R.

J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Hesselink, L.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Iyi, N.

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Jovanovic, J.

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

Kachru, R.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Kapphan, S.

S. Kapphan, A. Breitkopf, “PE-layers and proton diffusion profiles in LiNbO3 investigated with Fourier-IR and second harmonic-generation,” Phys. Status Solidi A 133, 159–166 (1992).
[CrossRef]

S. Klauer, M. Wöhlecke, S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
[CrossRef]

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kimura, S.

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Kitamura, K.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

H. Guenther, R. Macfarlane, Y. Furukawa, K. Kitamura, R. Neurgaonkar, “Two-color holography in reduced near-stoichiometric lithium niobate,” Appl. Opt. 37, 7611–7623 (1998).
[CrossRef]

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

Klauer, S.

S. Klauer, M. Wöhlecke, S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
[CrossRef]

Kovacs, L.

K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
[CrossRef]

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
[CrossRef]

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Krätzig, E.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Lande, D.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lee, M.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

Lengyel, K.

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Liu, A.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

Luennemann, M.

Macfarlane, R.

Mandula, G.

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Matthews, P. J.

P. J. Matthews, A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Mickelson, A. R.

P. J. Matthews, A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Mora, C.

L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
[CrossRef]

Nakamura, M.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

Nee, I.

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Neurgaonkar, R.

Neurgaonkar, R. R.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

O’Bryan, H. M.

H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
[CrossRef]

Orlov, S.

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Peter, A.

K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
[CrossRef]

Polgar, K.

K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
[CrossRef]

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
[CrossRef]

Psaltis, D.

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Räuber, A.

J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Ravi, G.

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

Rodgers, K. F.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Rupp, R. A.

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Schirmer, O. F.

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Schneider, J.

J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

Sota, T.

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

Staebler, D. L.

D. L. Staebler, J. J. Amodei, “Thermal fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Suzuki, K.

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

Takekawa, S.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

Tanaka, S.

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

Thiemann, O.

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

von der Linde, D.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Watanabe, Y.

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Woehlecke, M.

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Wöhlecke, M.

S. Klauer, M. Wöhlecke, S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
[CrossRef]

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

Yamaji, T.

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

Yamamoto, J. K.

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

Yang, Y.

Y. Yang, D. Psaltis, M. Luennemann, D. Berben, U. Hartwig, K. Buse, “Photorefractive properties of lithium niobate crystals doped with manganese,” J. Opt. Soc. Am. B 20, 1491–1502 (2003).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano, S. Tanaka, “Nonvolatile two-color holographic recording in Tb-doped LiNbO3,” Appl. Phys. Lett. 76, 1653–1655 (2000).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, T. Yamaji, “Nonvolatile two-color holography in Mn-doped near-stoichiometric lithium niobate,” Appl. Phys. Lett. 81, 2686–2688 (2002).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Nonvolatile two-color holographic recording in undoped near-stoichiometric lithium tantalate crystals with continuous-wave lasers,” Appl. Phys. Lett. 82, 4218–4220 (2003).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Y. Yang, I. Nee, K. Buse, D. Psaltis, “Ionic and electric dark decay of holograms in LiNbO3:Fe crystals,” Appl. Phys. Lett. 78, 4076–4078 (2001).
[CrossRef]

Ferroelectrics (1)

D. L. Staebler, J. J. Amodei, “Thermal fixed holograms in LiNbO3,” Ferroelectrics 3, 107–113 (1972).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. M. O’Bryan, P. K. Gallagher, C. D. Brandle, “Congruent composition and Li-rich phase boundary of LiNbO3” J. Am. Ceram. Soc. 68, 493–496 (1985).
[CrossRef]

J. Appl. Phys. (2)

P. J. Matthews, A. R. Mickelson, “Properties of proton exchange waveguides in lithium tantalate,” J. Appl. Phys. 72, 2562–2574 (1992).
[CrossRef]

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, H. Hatano, “Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals,” J. Appl. Phys. 95, 7637–7644 (2004).
[CrossRef]

J. Cryst. Growth (3)

M. Nakamura, S. Takekawa, Y. Furukawa, K. Kitamura, “Influence of powder on radio-frequency power stability and compositional uniformity in near-stoichiometric LiTaO3 crystal grown by double-crucible Czochralski method,” J. Cryst. Growth 245, 267–272 (2002).
[CrossRef]

K. Polgar, A. Peter, L. Kovacs, G. Corradi, “Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method,” J. Cryst. Growth 177, 211–216 (1997).
[CrossRef]

K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, T. Hayashi, “Stoichiometric LiNbO3 single-crystal growth by double crucible Czochralski method using automatic powder supply-system,” J. Cryst. Growth 116, 327–332 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (2)

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

L. Kovacs, M. Wöhlecke, J. Jovanovic, K. Polgar, S. Kapphan, “Infrared absorption study of the OH vibration band in LiNbO3 crystals,” J. Phys. Chem. Solids 52, 797–803 (1991).
[CrossRef]

J. Phys. Condens. Matter (1)

Y. Watanabe, T. Sota, K. Suzuki, N. Iyi, K. Kitamura, S. Kimura, “Defect structure in LiNbO3,” J. Phys. Condens. Matter 7, 3627–3635 (1995).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Phys Rev. B (1)

S. Klauer, M. Wöhlecke, S. Kapphan, “Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3,” Phys Rev. B 45, 2786–2799 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Phys. Status Solidi A (2)

L. Kovacs, K. Polgar, R. Capelletti, C. Mora, “Diffusion of hydrogen isotopes in pure and Mg-doped LiNbO3 crystals,” Phys. Status Solidi A 120, 97–104 (1990).
[CrossRef]

S. Kapphan, A. Breitkopf, “PE-layers and proton diffusion profiles in LiNbO3 investigated with Fourier-IR and second harmonic-generation,” Phys. Status Solidi A 133, 159–166 (1992).
[CrossRef]

Science (1)

L. Hesselink, S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Solid State Commun. (2)

J. R. Herrington, B. Bischler, A. Räuber, J. Schneider, “An optical study of the stretching absorption band near 3 micron from OH- defects in LiNbO3,” Solid State Commun. 12, 351–354 (1973).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Other (3)

K. Kitamura, Y. Liu, S. Takekawa, G. Ravi, M. Nakamura, H. Hatano, “Effect of annealing treatment on two-color holographic storage performance in Mn-doped near-stoichiometric LiNbO3 crystals,” in Photorefractive Effects, Materials, and Devices, P. Delaye, C. Denz, L. Mager, G. Montemezzani, eds., Vol. 87 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 2003), pp. 666–670.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, eds., Holographic Data Storage (Springer-Verlag, Berlin, 2000).
[CrossRef]

G. Mandula, K. Lengyel, L. Kovacs, M. Ellabban, R. A. Rupp, M. Fally, “Thermal fixing of holographic gratings in nearly stoichiometric LiNbO3 crystals,” in International Conference on Solid State Crystals 2000: Growth, Characterization and Applications of Single Crystals, A. Rogalski, K. Adamiec, P. Madejczyk, eds., Proc. SPIE4412, 226–230 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption spectra of near-stoichiometric (a) LiNbO3 and (b) LiTaO3.

Fig. 2
Fig. 2

OH- IR absorption spectra of congruent (designated C) and near-stoichiometric LiNbO3 and LiTaO3.

Fig. 3
Fig. 3

Experimental setup: M1–M3, mirrors; HWP1, HWP2, half-wave plates; PBS, polarized beam splitter; S1–S3, shutters; D, detector.

Fig. 4
Fig. 4

Signal intensity diffracted from gratings during dark decay at several temperatures in SLT3 and SLNMn1 samples.

Fig. 5
Fig. 5

Arrhenius plot of dark-decay time constants of two-color holograms in near-stoichiometric LiNbO3 and LiTaO3.

Fig. 6
Fig. 6

Dependence of projected hologram lifetime at room temperature (RT) on proton concentrations (i.e., OH- absorption coefficient at peak position).

Tables (2)

Tables Icon

Table 1 Summary of the Growth Conditions of the Measured Crystals

Tables Icon

Table 2 Summary of the Characteristics of the Measured Samplesa

Metrics