Abstract

The fluorescence confocal microendoscope provides high-resolution, in vivo imaging of cellular pathology during optical biopsy. The confocal microendoscope employs a flexible fiber-optic catheter coupled to a custom-built slit-scan confocal microscope. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The 3-mm-diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope, adding microscopic imaging capability to conventional endoscopy. The design and performance of the miniature objective and focus assembly are discussed. Primary applications of the system include diagnosis of disease in the gastrointestinal tract and female reproductive system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. American Cancer Society, “Cancer Facts & Figures 2004” (American Cancer Society, Atlanta, Ga., 2004), http://www.cancer.org .
  2. M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).
  3. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  4. B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
    [CrossRef] [PubMed]
  5. M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
    [CrossRef] [PubMed]
  6. W. M. Petroll, J. V. Jester, H. D. Cavanagh, “Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration,” Scanning 18, 45–49 (1996).
    [CrossRef] [PubMed]
  7. C. J. Koester, J. D. Auran, H. D. Rosskothen, G. J. Florakis, R. B. Tackaberry, “Clinical microscopy of the cornea utilizing optical sectioning and a high-numerical-aperture objective,” J. Opt. Soc. Am. A 10, 1670–1679 (1993).
    [CrossRef] [PubMed]
  8. R. Juskaitis, T. Wilson, T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19, 15–19 (1997).
    [CrossRef]
  9. T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
    [CrossRef]
  10. R. H. Webb, F. J. Rogomentich, “Microlaser microscope using self-detection for confocality,” Opt. Lett. 20, 533–535 (1995).
    [CrossRef] [PubMed]
  11. D. L. Dickensheets, G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21, 764–766 (1996).
    [CrossRef] [PubMed]
  12. G. J. Tearney, R. H. Webb, B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23, 1152–1154 (1998).
    [CrossRef]
  13. W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
    [CrossRef] [PubMed]
  14. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
    [CrossRef]
  15. K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
    [CrossRef]
  16. A. F. Gmitro, D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18, 565–567 (1993).
    [CrossRef] [PubMed]
  17. A. R. Rouse, A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25, 1708–1710 (2000).
    [CrossRef]
  18. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, A. F. Gmitro, “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38, 7133–7144 (1999).
    [CrossRef]
  19. Sumitomo Electric, 21221 S. Western Avenue, Suite 200, Torrance, Calif. 90501.
  20. R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978).
  21. P. Rudolph, “Object glass,” U.S. patent576,896 (9February1897).
  22. Optics Technology, 3800 Monroe Avenue, Pittsford, N.Y. 14534).
  23. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).
  24. North American Latex, P.O. Box 56062, Vancouver, British Columbia, Canada V5L 5E2.
  25. >Molecular Probes, 29851 Willow Creek Road, Eugene, Oreg. 97402.

2002 (1)

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

2001 (2)

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

2000 (2)

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

A. R. Rouse, A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25, 1708–1710 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (2)

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

R. Juskaitis, T. Wilson, T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19, 15–19 (1997).
[CrossRef]

1996 (2)

W. M. Petroll, J. V. Jester, H. D. Cavanagh, “Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration,” Scanning 18, 45–49 (1996).
[CrossRef] [PubMed]

D. L. Dickensheets, G. S. Kino, “Micromachined scanning confocal optical microscope,” Opt. Lett. 21, 764–766 (1996).
[CrossRef] [PubMed]

1995 (2)

R. H. Webb, F. J. Rogomentich, “Microlaser microscope using self-detection for confocality,” Opt. Lett. 20, 533–535 (1995).
[CrossRef] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

1993 (2)

Anderson, R. R.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Anikijenko, P.

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

Auran, J. D.

Aziz, D.

Aziz, D. J.

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

Barkla, D.

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

Bouma, B. E.

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

Cavanagh, H. D.

W. M. Petroll, J. V. Jester, H. D. Cavanagh, “Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration,” Scanning 18, 45–49 (1996).
[CrossRef] [PubMed]

Collier, T.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Delaney, T. P.

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

De-Pradier, B.

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Descour, M.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

Dickensheets, D. L.

Donaldson, L.

Esterowitz, D.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Florakis, G. J.

Follen, M.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

Gmitro, A. F.

Goldman, L.

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

Grossman, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Hopkins, M. F.

Jester, J. V.

W. M. Petroll, J. V. Jester, H. D. Cavanagh, “Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration,” Scanning 18, 45–49 (1996).
[CrossRef] [PubMed]

Juskaitis, R.

R. Juskaitis, T. Wilson, T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19, 15–19 (1997).
[CrossRef]

Kerr, J. H.

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

King, R.

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978).

Kino, G. S.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

Koester, C. J.

Kung Bin, S.

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Liang, C.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

Malpica, A.

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Masters, B. R.

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

McLaren, W.

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

Messerschmidt, B.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

Minsky, M.

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

O’Grady, T. C.

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

Petroll, W. M.

W. M. Petroll, J. V. Jester, H. D. Cavanagh, “Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration,” Scanning 18, 45–49 (1996).
[CrossRef] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

Rajadhyaksha, M.

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Richards-Kortum, R.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Rogomentich, F. J.

Rosskothen, H. D.

Rouse, A. R.

Rudolph, P.

P. Rudolph, “Object glass,” U.S. patent576,896 (9February1897).

Sabharwal, Y. S.

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

Shen, P.

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Sung, K. B.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

Tackaberry, R. B.

Tearney, G. J.

Watson, T. F.

R. Juskaitis, T. Wilson, T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19, 15–19 (1997).
[CrossRef]

Webb, R. H.

G. J. Tearney, R. H. Webb, B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23, 1152–1154 (1998).
[CrossRef]

R. H. Webb, F. J. Rogomentich, “Microlaser microscope using self-detection for confocality,” Opt. Lett. 20, 533–535 (1995).
[CrossRef] [PubMed]

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

Wilson, T.

R. Juskaitis, T. Wilson, T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19, 15–19 (1997).
[CrossRef]

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Appl. Opt. (1)

Dig. Dis. Sci. (1)

W. McLaren, P. Anikijenko, D. Barkla, T. P. Delaney, R. King, “In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI),” Dig. Dis. Sci. 46, 2263–2276 (2001).
[CrossRef] [PubMed]

IEEE Trans. Bio-Med. Eng. (1)

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, R. Richards-Kortum, “Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues,” IEEE Trans. Bio-Med. Eng. 49, 1168–1172 (2002).
[CrossRef]

J. Biomed. Opt. (1)

B. R. Masters, D. J. Aziz, A. F. Gmitro, J. H. Kerr, T. C. O’Grady, L. Goldman, “Rapid observation of unfixed, unstained human skin biopsy specimens with confocal microscopy and visualization,” J. Biomed. Opt. 2, 437–445 (1997).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

M. Rajadhyaksha, M. Grossman, D. Esterowitz, R. H. Webb, R. R. Anderson, “In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast,” J. Invest. Dermatol. 104, 946–952 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun. 188, 267–273 (2001).
[CrossRef]

Opt. Express (1)

T. Collier, P. Shen, B. De-Pradier, S. Kung Bin, R. Richards-Kortum, A. Malpica, M. Follen, “Near real time confocal microscopy of amelanotic tissue: dynamics of acetowhitening enable nuclear segmentation,” Opt. Express 17, 40–48 (2000), http://www.opticsexpress.org .
[CrossRef]

Opt. Lett. (5)

Scanning (2)

W. M. Petroll, J. V. Jester, H. D. Cavanagh, “Quantitative three-dimensional confocal imaging of the cornea in situ and in vivo: system design and calibration,” Scanning 18, 45–49 (1996).
[CrossRef] [PubMed]

R. Juskaitis, T. Wilson, T. F. Watson, “Real-time white light reflection confocal microscopy using a fibre-optic bundle,” Scanning 19, 15–19 (1997).
[CrossRef]

Other (10)

American Cancer Society, “Cancer Facts & Figures 2004” (American Cancer Society, Atlanta, Ga., 2004), http://www.cancer.org .

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Sumitomo Electric, 21221 S. Western Avenue, Suite 200, Torrance, Calif. 90501.

R. Kingslake, Lens Design Fundamentals (Academic, New York, 1978).

P. Rudolph, “Object glass,” U.S. patent576,896 (9February1897).

Optics Technology, 3800 Monroe Avenue, Pittsford, N.Y. 14534).

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (Wiley, New York, 1978).

North American Latex, P.O. Box 56062, Vancouver, British Columbia, Canada V5L 5E2.

>Molecular Probes, 29851 Willow Creek Road, Eugene, Oreg. 97402.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Functional components of the slit-scan confocal microendoscope.

Fig. 2
Fig. 2

Schematic of the 3-mm-diameter objective lens. The tissue plane is on the left.

Fig. 3
Fig. 3

Measured and predicted MTF of the miniature objective (bar target test). The vertical dotted line represents the spatial frequency at which a minimum of 50% contrast was required.

Fig. 4
Fig. 4

Measured lateral resolution of the miniature objective (knife-edge test). (a) Edge response with cumulative Gaussian distribution fit and (b) the corresponding Gaussian approximation to the PSF.

Fig. 5
Fig. 5

Measured and predicted axial color of the miniature objective (focal shift in tissue space).

Fig. 6
Fig. 6

Pneumatic focus assembly. Distal subassembly is shown screwed to the lens barrel. The fiber extends to the right and enters the bench-top optical system. (Drawing not to scale.)

Fig. 7
Fig. 7

Measured performance of the pneumatic focus mechanism.

Fig. 8
Fig. 8

Mechanical focus assembly. Distal subassembly is shown screwed to the lens barrel. The fiber extends to the right and enters the bench-top optical system. (Drawing not to scale.)

Fig. 9
Fig. 9

Measured performance of the mechanical focus mechanism.

Fig. 10
Fig. 10

(a) Confocal microendoscope in the instrument channel of an Olympus CF-100L colonoscope. (b) Detail of the optomechanical components of the catheter. (c) Still frame captured from video collected by the colonoscope and of the microendoscope imaging rat intestine.

Fig. 11
Fig. 11

Excised human ovarian tissue imaged with the confocal microendoscope. (a) Normal epithelial layer. (b) Normal stromal layer. Tissue in (a) and in (b) are from separate patients.

Fig. 12
Fig. 12

Excised human ovarian tissue. (a) Confocal microendoscope view. (b) Histology image from a nearby region. This patient was diagnosed with cystic papillary carcinoma.

Fig. 13
Fig. 13

(a) Healthy excised human cervical tissue and (b) healthy esophageal tissue excised from a patient diagnosed with Barrett’s esophagus.

Fig. 14
Fig. 14

Excised human colon tissue imaged with the confocal microendoscope. (a) Normal tissue. (b) Tumor region from same patient.

Tables (1)

Tables Icon

Table 1 Specification of the 3-mm-Diameter Objective

Metrics