Abstract

Ring-shaped and radial diffractive gratings are designed with rigorous diffraction theory to couple light of a nearly monochromatic LED into a thin planar light guide on the bottom side. The theoretical coupling efficiencies for ring-shaped and radial gratings are 41% and 66%, respectively. Optimized diffractive elements are manufactured with direct electron-beam lithography and reactive-ion-etching into SiO2 substrates. Good agreement between experimental and theoretical results for selected radial gratings is reached. Furthermore, the mass production tests using injection molding are carried out with good replicability.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Parikka, T. Kaikuranta, P. Laakkonen, J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, J. Turunen, “Deterministic diffractive diffusers for displays,” Appl. Opt. 40, 2239–2246 (2001).
    [CrossRef]
  2. W. A. Parkyn, D. G. Pelka, J. Popovich, “The Black Hole™: cuspated lightguide-injectors and illuminators for LEDs,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 183–189 (1999).
    [CrossRef]
  3. T. Tamir, “Beam and lightguide couplers,” in Integrated Optics, T. Tamir, ed. (Springer, New York, 1975), pp. 83–137.
    [CrossRef]
  4. T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
    [CrossRef]
  5. M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 123–157.
    [CrossRef]
  6. S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
    [CrossRef]
  7. Ph. M. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
    [CrossRef]
  8. R. Waldhäus, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
    [CrossRef]
  9. J. Backlund, “Multifunctional lightguide grating couplers for integrated optics,” Ph.D. thesis (Chalmers University of Technology, Göteborg, Sweden, 2001).
  10. K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
    [CrossRef]
  11. J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor Francis, London, 1997), pp. 31–52.
  12. F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
    [CrossRef]
  13. F. Nikolajeff, S. Jacobsson, S. Hård, Å. Billman, L. Lundbladh, C. Lindell, “Replication of continuous-relief diffractive optical elements by conventional compact disk injection-molding techniques,” Appl. Opt. 36, 4655–4659 (1997).
    [CrossRef] [PubMed]

2002

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

2001

2000

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

1997

1988

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

Ph. M. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

1977

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Backlund, J.

J. Backlund, “Multifunctional lightguide grating couplers for integrated optics,” Ph.D. thesis (Chalmers University of Technology, Göteborg, Sweden, 2001).

Billman, Å.

Bräuer, A.

R. Waldhäus, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

Carcenac, F.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Chen, Y.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Hård, S.

Hietala, J.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Honkanen, M.

Jääskeläinen, T.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Jacobsson, S.

Kaikuranta, T.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

M. Parikka, T. Kaikuranta, P. Laakkonen, J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, J. Turunen, “Deterministic diffractive diffusers for displays,” Appl. Opt. 40, 2239–2246 (2001).
[CrossRef]

Kley, E.-B.

R. Waldhäus, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

Kuittinen, M.

Laakkonen, P.

Launois, H.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Lautanen, J.

Lebib, A.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Lindell, C.

Lukosz, W.

Ph. M. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Lundbladh, L.

Manin-Ferlazzo, L.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Mönkkönen, K.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Nellen, Ph. M.

Ph. M. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Neviere, M.

M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 123–157.
[CrossRef]

Nikolajeff, F.

Nishihara, H.

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

Pääkkönen, E. J.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Pääkkönen, P.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Pakkanen, T. T.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Parikka, M.

Parkyn, W. A.

W. A. Parkyn, D. G. Pelka, J. Popovich, “The Black Hole™: cuspated lightguide-injectors and illuminators for LEDs,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 183–189 (1999).
[CrossRef]

Pelka, D. G.

W. A. Parkyn, D. G. Pelka, J. Popovich, “The Black Hole™: cuspated lightguide-injectors and illuminators for LEDs,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 183–189 (1999).
[CrossRef]

Peng, S. T.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Popovich, J.

W. A. Parkyn, D. G. Pelka, J. Popovich, “The Black Hole™: cuspated lightguide-injectors and illuminators for LEDs,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 183–189 (1999).
[CrossRef]

Schnabel, B.

R. Waldhäus, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

Suhara, T.

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

Sunagawa, H.

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

Tamir, T.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

T. Tamir, “Beam and lightguide couplers,” in Integrated Optics, T. Tamir, ed. (Springer, New York, 1975), pp. 83–137.
[CrossRef]

Tervo, J.

Tiefenthaler, K.

Ph. M. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Turunen, J.

M. Parikka, T. Kaikuranta, P. Laakkonen, J. Lautanen, J. Tervo, M. Honkanen, M. Kuittinen, J. Turunen, “Deterministic diffractive diffusers for displays,” Appl. Opt. 40, 2239–2246 (2001).
[CrossRef]

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor Francis, London, 1997), pp. 31–52.

Ura, S.

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

Vieu, C.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Waldhäus, R.

R. Waldhäus, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys.

T. Tamir, S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977).
[CrossRef]

Electron. Lett.

R. Waldhäus, B. Schnabel, E.-B. Kley, A. Bräuer, “Efficient focusing polymer lightguide grating couplers,” Electron. Lett. 33, 623–624 (1997).
[CrossRef]

J. Lightwave Technol.

S. Ura, H. Sunagawa, T. Suhara, H. Nishihara, “Focusing grating couplers for polarization detection,” J. Lightwave Technol. 6, 1028–1033 (1988).
[CrossRef]

Microelectron. Eng.

F. Carcenac, C. Vieu, A. Lebib, Y. Chen, L. Manin-Ferlazzo, H. Launois, “Fabrication of high density nanostructures grating (500 Gbit/in2) used as molds for nanoimprint lithography,” Microelectron. Eng. 53, 163–166 (2000).
[CrossRef]

Polym. Eng. Sci.

K. Mönkkönen, J. Hietala, P. Pääkkönen, E. J. Pääkkönen, T. Kaikuranta, T. T. Pakkanen, T. Jääskeläinen, “Replication of sub-micron structures using amorphous thermoplastics,” Polym. Eng. Sci. 40, 1600–1608 (2002).
[CrossRef]

Sens. Actuators

Ph. M. Nellen, K. Tiefenthaler, W. Lukosz, “Integrated optical input grating couplers as biochemical sensors,” Sens. Actuators 15, 285–295 (1988).
[CrossRef]

Other

J. Backlund, “Multifunctional lightguide grating couplers for integrated optics,” Ph.D. thesis (Chalmers University of Technology, Göteborg, Sweden, 2001).

M. Neviere, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 123–157.
[CrossRef]

W. A. Parkyn, D. G. Pelka, J. Popovich, “The Black Hole™: cuspated lightguide-injectors and illuminators for LEDs,” in Nonimaging Optics: Maximum Efficiency Light Transfer V, R. Winston, ed., Proc. SPIE3781, 183–189 (1999).
[CrossRef]

T. Tamir, “Beam and lightguide couplers,” in Integrated Optics, T. Tamir, ed. (Springer, New York, 1975), pp. 83–137.
[CrossRef]

J. Turunen, “Diffraction theory of microrelief gratings,” in Micro-optics: Elements, Systems, and Applications, H. P. Herzig, ed. (Taylor Francis, London, 1997), pp. 31–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Source-to-light guide coupling, through (a) the face and (b) the surface.

Fig. 2
Fig. 2

(a) Geometry of the ring-shaped grating coupler and (b) structure of the element. d l , the local grating period; θin,l , the angle of incidence; c l , the line width; and h, the grating depth.

Fig. 3
Fig. 3

Geometry of the radial grating coupler. θin,l is the angle of incidence, and s is the distance between the LED and the grating.

Fig. 4
Fig. 4

Theoretical diffraction efficiency as a function of filling factor f and profile height h. The period of the grating is (a) 800 nm and (b) 950 nm.

Fig. 5
Fig. 5

(a) Injection-molded lightguide with eight radial incoupling gratings and (b) a lighted keyboard of a mobile phone.

Fig. 6
Fig. 6

Scanning electron microscope micrograph of the fabricated radial grating coupler in polycarbonate plastic.

Tables (3)

Tables Icon

Table 1 Grating Periods dl , First-Order Efficiencies η 1 , and Total Coupling Efficiencies ηlg of the Ring-Shaped Gratings for Various Angles of Incidence θ in,l a

Tables Icon

Table 2 Maximum Grating Periods dl,max , Optimized Grating Periods d l,opt , First-Order Efficiencies η ±1 , and Coupling Efficiencies ηlg of the Conically Mounted Gratings for Various Angle of Incidence θ in,l a

Tables Icon

Table 3 Calculated ηc and Experimental Coupling Efficiencies η e for TE-Polarized, TM-Polarized, and Unpolarized Light for Various Angles of Incidence θ in,l a

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Pϕ=1π02π0ϕcos ϕ sin ϕdϕdϑ,
Pϕ=sin2 ϕ.
dl=λ/n sin θ1-sin θin,l.
ηlg=ηlTE+ηlTM/2,
ηc=0L PΔϕlηlg,
dlλ/cos θin,l.
ηe=1-IrIin-ItTIin,

Metrics