Abstract

Optical memory in a deformed-helix ferroelectric liquid crystal is proposed by deforming the helix under the application of a square-voltage pulse of known magnitude and frequency. This effect is based on the electromechanical effect of helix deformation due to the electric field. When the interaction between the electric field and the dipole is sufficiently strong, all of the dipoles align along the electric field. In such a situation the interlayer dipole-dipole interaction is strong enough to balance the elastic deformation energy. When the electric field is switched off, the molecules remain in a static, balanced state owing to the dipole-dipole interaction and hence the memory effect.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage

Qi Guo, Xiaojin Zhao, Huijie Zhao, and V.G. Chigrinov
Opt. Lett. 40(10) 2413-2416 (2015)

Fast bistable intensive light scattering in helix-free ferroelectric liquid crystals

Alexander Andreev, Tatiana Andreeva, Igor Kompanets, Nikolay Zalyapin, Huan Xu, Mike Pivnenko, and Daping Chu
Appl. Opt. 55(13) 3483-3492 (2016)

Photo-aligned ferroelectric liquid crystals in microchannels

Daniel Budaszewski, Abhishek K. Srivastava, Alwin M. W. Tam, Tomasz R. Wolinski, Vladimir G. Chigrinov, and Hoi-Sing Kwok
Opt. Lett. 39(16) 4679-4682 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription