Abstract

Optical memory in a deformed-helix ferroelectric liquid crystal is proposed by deforming the helix under the application of a square-voltage pulse of known magnitude and frequency. This effect is based on the electromechanical effect of helix deformation due to the electric field. When the interaction between the electric field and the dipole is sufficiently strong, all of the dipoles align along the electric field. In such a situation the interlayer dipole-dipole interaction is strong enough to balance the elastic deformation energy. When the electric field is switched off, the molecules remain in a static, balanced state owing to the dipole-dipole interaction and hence the memory effect.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Cohen, R. Progreb, K. Vinokur, D. Davidov, “Spatial light modulator based on a deformed helix ferroelectric liquid crystal and a thin a-Si:H amorphous photoconductor,” Appl. Opt. 36, 455–459 (1997).
    [CrossRef] [PubMed]
  2. J. Fünfschilling, M. Schadt, “New short-pitch bistable ferroelectric (SBF) liquid crystal displays,” Jpn. J. Appl. Phys. 30, 741–746 (1991).
    [CrossRef]
  3. S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
    [CrossRef]
  4. N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
    [CrossRef]
  5. A. Jakli, S. Markscheffel, A. Saupe, “Helix deformation and bistable switching of ferroelectric liquid crystals,” J. Appl. Phys. 79, 1891–1894 (1996).
    [CrossRef]
  6. L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
    [CrossRef]
  7. S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
    [CrossRef]
  8. M. Maeda, M. Miyamori, I. Suzuki, “Optical transmission and polarization switching properties of a ferroelectric liquid crystal cell with a stable twisted state,” Mol. Cryst. Liq. Cryst. 366, 703–714 (2001).
    [CrossRef]
  9. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 116–127.
  10. A. M. Biradar, S. S. Bawa, W. Haase, “Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials,” Ferroelectrics 256, 201–210 (2001).
    [CrossRef]
  11. T. Tsuchiya, H. Takezoe, A. Fukuda, “Importance of controlling material constants to realize bistable uniform states in surface stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 25, L27–L29 (1986).
    [CrossRef]
  12. S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
    [CrossRef]

2001 (2)

M. Maeda, M. Miyamori, I. Suzuki, “Optical transmission and polarization switching properties of a ferroelectric liquid crystal cell with a stable twisted state,” Mol. Cryst. Liq. Cryst. 366, 703–714 (2001).
[CrossRef]

A. M. Biradar, S. S. Bawa, W. Haase, “Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials,” Ferroelectrics 256, 201–210 (2001).
[CrossRef]

1999 (1)

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

1997 (1)

1996 (1)

A. Jakli, S. Markscheffel, A. Saupe, “Helix deformation and bistable switching of ferroelectric liquid crystals,” J. Appl. Phys. 79, 1891–1894 (1996).
[CrossRef]

1991 (1)

J. Fünfschilling, M. Schadt, “New short-pitch bistable ferroelectric (SBF) liquid crystal displays,” Jpn. J. Appl. Phys. 30, 741–746 (1991).
[CrossRef]

1990 (1)

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

1989 (1)

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

1987 (1)

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

1986 (1)

T. Tsuchiya, H. Takezoe, A. Fukuda, “Importance of controlling material constants to realize bistable uniform states in surface stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 25, L27–L29 (1986).
[CrossRef]

1980 (1)

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Bawa, S. S.

A. M. Biradar, S. S. Bawa, W. Haase, “Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials,” Ferroelectrics 256, 201–210 (2001).
[CrossRef]

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

Beresnev, L. A.

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Biradar, A. M.

A. M. Biradar, S. S. Bawa, W. Haase, “Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials,” Ferroelectrics 256, 201–210 (2001).
[CrossRef]

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

Chandra, S.

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

Chingrinov, V. G.

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Clark, N. A.

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Cohen, G. B.

Davidov, D.

Dergachev, D. I.

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Fukuda, A.

T. Tsuchiya, H. Takezoe, A. Fukuda, “Importance of controlling material constants to realize bistable uniform states in surface stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 25, L27–L29 (1986).
[CrossRef]

Fünfschilling, J.

J. Fünfschilling, M. Schadt, “New short-pitch bistable ferroelectric (SBF) liquid crystal displays,” Jpn. J. Appl. Phys. 30, 741–746 (1991).
[CrossRef]

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Haase, W.

A. M. Biradar, S. S. Bawa, W. Haase, “Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials,” Ferroelectrics 256, 201–210 (2001).
[CrossRef]

Higuchi, R.

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 116–127.

Jakli, A.

A. Jakli, S. Markscheffel, A. Saupe, “Helix deformation and bistable switching of ferroelectric liquid crystals,” J. Appl. Phys. 79, 1891–1894 (1996).
[CrossRef]

Kishio, S.

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

Lagerwall, S. T.

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

Maeda, M.

M. Maeda, M. Miyamori, I. Suzuki, “Optical transmission and polarization switching properties of a ferroelectric liquid crystal cell with a stable twisted state,” Mol. Cryst. Liq. Cryst. 366, 703–714 (2001).
[CrossRef]

Markscheffel, S.

A. Jakli, S. Markscheffel, A. Saupe, “Helix deformation and bistable switching of ferroelectric liquid crystals,” J. Appl. Phys. 79, 1891–1894 (1996).
[CrossRef]

Mikami, N.

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

Mikhailov, A. S.

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

Miyamori, M.

M. Maeda, M. Miyamori, I. Suzuki, “Optical transmission and polarization switching properties of a ferroelectric liquid crystal cell with a stable twisted state,” Mol. Cryst. Liq. Cryst. 366, 703–714 (2001).
[CrossRef]

Nambu, H.

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

Oue, T.

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

Ozaki, M.

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

Poshidaev, E. P.

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Progreb, R.

Saini, K. K.

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

Sakurai, T.

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

Saupe, A.

A. Jakli, S. Markscheffel, A. Saupe, “Helix deformation and bistable switching of ferroelectric liquid crystals,” J. Appl. Phys. 79, 1891–1894 (1996).
[CrossRef]

Saxena, K.

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

Schadt, M.

J. Fünfschilling, M. Schadt, “New short-pitch bistable ferroelectric (SBF) liquid crystal displays,” Jpn. J. Appl. Phys. 30, 741–746 (1991).
[CrossRef]

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Suzuki, I.

M. Maeda, M. Miyamori, I. Suzuki, “Optical transmission and polarization switching properties of a ferroelectric liquid crystal cell with a stable twisted state,” Mol. Cryst. Liq. Cryst. 366, 703–714 (2001).
[CrossRef]

Takezoe, H.

T. Tsuchiya, H. Takezoe, A. Fukuda, “Importance of controlling material constants to realize bistable uniform states in surface stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 25, L27–L29 (1986).
[CrossRef]

Tsuchiya, T.

T. Tsuchiya, H. Takezoe, A. Fukuda, “Importance of controlling material constants to realize bistable uniform states in surface stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 25, L27–L29 (1986).
[CrossRef]

Vinokur, K.

Yablonskii, S. V.

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

Yoshino, K.

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

N. A. Clark, S. T. Lagerwall, “Submicrosecond bistable electro-optic switching in liquid crystals,” Appl. Phys. Lett. 36, 899–901 (1980).
[CrossRef]

S. V. Yablonskii, T. Oue, H. Nambu, A. S. Mikhailov, M. Ozaki, K. Yoshino, “Electromechanical effect in freely suspended liquid crystal films,” Appl. Phys. Lett. 75, 64–66 (1999).
[CrossRef]

Ferroelectrics (1)

A. M. Biradar, S. S. Bawa, W. Haase, “Goldstone mode behaviour in deformed helix ferroelectric liquid crystal materials,” Ferroelectrics 256, 201–210 (2001).
[CrossRef]

J. Appl. Phys. (1)

A. Jakli, S. Markscheffel, A. Saupe, “Helix deformation and bistable switching of ferroelectric liquid crystals,” J. Appl. Phys. 79, 1891–1894 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (3)

J. Fünfschilling, M. Schadt, “New short-pitch bistable ferroelectric (SBF) liquid crystal displays,” Jpn. J. Appl. Phys. 30, 741–746 (1991).
[CrossRef]

S. Kishio, M. Ozaki, K. Yoshino, T. Sakurai, N. Mikami, R. Higuchi, “Characteristics of optical switching and memory effects utilizing deformation of helicoidal structure of ferroelectric liquid crystals with large spontaneous polarization,” Jpn. J. Appl. Phys. 26, 513–516 (1987).
[CrossRef]

T. Tsuchiya, H. Takezoe, A. Fukuda, “Importance of controlling material constants to realize bistable uniform states in surface stabilized ferroelectric liquid crystal cells,” Jpn. J. Appl. Phys. 25, L27–L29 (1986).
[CrossRef]

Liq. Cryst. (1)

L. A. Beresnev, V. G. Chingrinov, D. I. Dergachev, E. P. Poshidaev, J. Fünfschilling, M. Schadt, “Deformed helix ferroelectric liquid crystal display: a new electrooptic mode in ferroelectric chiral smectic C liquid crystals,” Liq. Cryst. 5, 1171–1177 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

M. Maeda, M. Miyamori, I. Suzuki, “Optical transmission and polarization switching properties of a ferroelectric liquid crystal cell with a stable twisted state,” Mol. Cryst. Liq. Cryst. 366, 703–714 (2001).
[CrossRef]

Phys. Status Solidi A (1)

S. S. Bawa, K. Saxena, A. M. Biradar, K. K. Saini, S. Chandra, “Bistable switching and molecular reorientation of ferroelectric liquid crystals by current analysis,” Phys. Status Solidi A 118, 561–566 (1990).
[CrossRef]

Other (1)

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp. 116–127.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Molecular structure of a typical DHFLC sample after the application of an electric field. Here the interlayer dipolar interaction is shown by a dotted curve and the intralayer repulsive dipolar interaction by a solid curve. A long molecular axis is shown with an arrow and its dipole moment with a solid head. Three-dimensional representation of the molecules with its dipole moment is shown in the curves for clarity.

Fig. 2
Fig. 2

Optical response of DHFLC at 25 °C in a 3-μm cell at 20 V and 10 Hz where CH1 and CH2 show the driving delayed-square voltage pulse and its optical response, respectively. The outside mark on the y axis (voltage axis) shows zero voltage for both the input and the output channels. TBA shows the time scale per division on the x axis, which is same for both channels.

Fig. 3
Fig. 3

Current response of DHFLC at 25 °C in a 3-μm cell at 20 V and 10 Hz where CH1 and CH2 show the driving delayed-square voltage pulse and its optical response, respectively. TBA shows the time scale per division on the x axis, which is same for both channels.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Cryst-14 °CSm C*60.5 °C Sm A64 °CIso,
P=ε-1ε0E0 expjωt,
P=n0p/N p=NP/n0=Nε-1ε0E0 expjωt/n0.
Uij=2pipj4πε0λp3,
Uij=2ε-1ε0E24πε0λp3N2n02.
U=12ε0ΔE02Δεωn0.
UUij=πΔE02Δεωλp3ε-1ε0E2n0N2.

Metrics