Abstract

We propose a diffraction-type optical triangulation sensor based on the diffraction theorem and the laser triangulation method. The advantage of the proposed sensor is that it obtains not only the linear displacement of a moving object but also its three angular motion errors. The developed sensor is composed mainly of a laser source, two quadrant detectors, and a reflective diffraction grating. The reflective diffraction grating can reflect the incident laser beam into several diffractive rays, and two quadrant detectors were set up for detecting the position of 0- and +1-order diffraction rays. According to the optical triangulation relationship between the spatial incident angles of a laser beam and the output coordinates of two quadrant detectors, the displacement and the three angular motion errors of a moving object can be obtained simultaneously.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Keyence Inc., The Chinese Catalog of Sensors (Keyence, Osaka, Japan, 2004), pp. 424–459.
  2. H. Wang, “Long range optical triangulation utilizing collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
    [CrossRef]
  3. L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
    [CrossRef]
  4. S. B. Oh, K. C. Kim, S. H. Kim, “An averaging method for optical triangulation displacement sensors using diffraction grating,” Rev. Sci. Instrum. 72, 2822–2826 (2001).
    [CrossRef]
  5. V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
    [CrossRef]

2003

V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

2001

S. B. Oh, K. C. Kim, S. H. Kim, “An averaging method for optical triangulation displacement sensors using diffraction grating,” Rev. Sci. Instrum. 72, 2822–2826 (2001).
[CrossRef]

1999

L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

1995

H. Wang, “Long range optical triangulation utilizing collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
[CrossRef]

Kim, K. C.

S. B. Oh, K. C. Kim, S. H. Kim, “An averaging method for optical triangulation displacement sensors using diffraction grating,” Rev. Sci. Instrum. 72, 2822–2826 (2001).
[CrossRef]

Kim, S. H.

S. B. Oh, K. C. Kim, S. H. Kim, “An averaging method for optical triangulation displacement sensors using diffraction grating,” Rev. Sci. Instrum. 72, 2822–2826 (2001).
[CrossRef]

Lombardo, V.

V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Marzulli, T.

V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Oh, S. B.

S. B. Oh, K. C. Kim, S. H. Kim, “An averaging method for optical triangulation displacement sensors using diffraction grating,” Rev. Sci. Instrum. 72, 2822–2826 (2001).
[CrossRef]

Pappalettere, C.

V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Sforza, P.

V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Song, D.

L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Wang, H.

H. Wang, “Long range optical triangulation utilizing collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
[CrossRef]

Yuan, F.

L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Zeng, L.

L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Zhang, R.

L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

Opt. Lasers Eng.

H. Wang, “Long range optical triangulation utilizing collimated probe beam,” Opt. Lasers Eng. 23, 41–52 (1995).
[CrossRef]

L. Zeng, F. Yuan, D. Song, R. Zhang, “A two-beam laser triangulation for measuring the position of a moving object,” Opt. Lasers Eng. 31, 445–453 (1999).
[CrossRef]

V. Lombardo, T. Marzulli, C. Pappalettere, P. Sforza, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Rev. Sci. Instrum.

S. B. Oh, K. C. Kim, S. H. Kim, “An averaging method for optical triangulation displacement sensors using diffraction grating,” Rev. Sci. Instrum. 72, 2822–2826 (2001).
[CrossRef]

Other

Keyence Inc., The Chinese Catalog of Sensors (Keyence, Osaka, Japan, 2004), pp. 424–459.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Prototype optical system of the diffraction-type optical triangulation sensor.

Fig. 2
Fig. 2

Experimental setup of verification of a quadrant detector.

Fig. 3
Fig. 3

(a) Calibration test of a quadrant detector along the positive x axis, (b) calibration test of a quadrant detector along the negative x axis, and (c) residual errors between HP and QD along the x axis.

Fig. 4
Fig. 4

(a) Calibration test of a quadrant detector along the positive y axis, (b) calibration test of a quadrant detector along the negative y axis, (c) average residual errors between HP and QD along the y axis.

Fig. 5
Fig. 5

Prototype of the experimental setup of the diffraction-type optical triangulation sensor.

Fig. 6
Fig. 6

Resolution test result of the displacement.

Fig. 7
Fig. 7

Resolution test result of the yaw angular error.

Fig. 8
Fig. 8

(a) Comparison results of displacement between DOTS and the laser interferometer and (b) average residual error between DOTS and the laser interferometer.

Fig. 9
Fig. 9

(a) Comparison results of yaw angular error between DOTS and the laser interferometer, and (b) average residual error between DOTS and the laser interferometer.

Fig. 10
Fig. 10

Measurement results of roll angular error.

Fig. 11
Fig. 11

Measurement results of pitch angular error.

Fig. 12
Fig. 12

Standard deviation of the pitch and roll measurement results.

Tables (1)

Tables Icon

Table 1 Comparison Items between the LC Series Sensors of Keyence Co. Ltd. and the DOTS

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

RI=00-1.
RRG=cos α cos βcos α sin β sin γ-sin α cos γsin α sin γ+sin α sin β cos γsin α cos βcos α cos γ+sin α sin β sin γsin α sin β cos γ-cos α sin γ-sin βcos β sin γcos β cos γ,
GI=GRRRI=IxIyIzT.
bmx=Ix+m λd, m=0, 1,by=Iy,bmz=1-bmx2-by21/2, m=0, 1,
RTQ+1=cos θ+10sin θ+1a+10100-sin θ+10cos θ+1c+10001,
RP=00Pz1.
Q+1P=Q+1TRRP=P+1xP+1yP+1z,
Q+1B=Q+1RG, GB=b+1bxb+1byb+1bz.
x+1p=P+1x-b+1bxb+1bz P+1z,
y+1p=P+1y-b+1byb+1bz P+1z.

Metrics