Abstract

Digital holography is combined with a pulse-laser electroholographic system for a real-time three-dimensional display. Owing to the one-dimensional characteristics of the Bragg-regime acousto-optic spatial-light modulator, vertical parallax cannot be generated from the acoustic signal propagating along the fan-shaped beam direction of the incident laser. To obtain a proper interference pattern, we attach a horizontal slit to the confocal lens system for recording the fringe data, significantly reducing the bandwidth of the vertical fringe data. When the bandwidth-reduced fringe data are displayed by use of a pulse-laser electroholographic system, the clarity and the quality of the image are found to be appreciably improved.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. A 9, 1969–1979 (1992).
    [CrossRef]
  2. N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
    [CrossRef]
  3. H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
    [CrossRef]
  4. S.-K. Kim, J.-Y. Son, J.-H. Chun, T.-K. Lim, “Holographic video system using Fourier transformation and data reduction,” Jpn. J. Appl. Phys. 38, 6379–6384 (1999).
    [CrossRef]
  5. For more information, see http://spi.www.media.mit.edu/groups/spi/ .
  6. M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng. 35, 1529–1537 (1996).
    [CrossRef]
  7. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011–2015 (1994).
    [CrossRef]
  8. T. Kreis, P. Aswendt, R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
    [CrossRef]
  9. N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).
  10. M. Sutkowski, M. Kujawinska, “Application of liquid crystal (LC) device for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
    [CrossRef]
  11. C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 38, 10 (1949).
    [CrossRef]
  12. S. A. Benton, “On a method for reducing the information content of holograms,” J. Opt. Soc. Am. 59, 1545A (1969).
  13. I. Yamaguchi, T. Zhang, “Phase-shift in digital holography,” Opt. Lett. 22, 1268–1270 (1997).
    [CrossRef] [PubMed]
  14. Y. Takaki, H. Kawai, H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order image,” Appl. Opt. 38, 4990–4996 (1999).
    [CrossRef]
  15. S.-K. Kim, H. Choi, J.-Y. Son, “Recording of high spatial frequency by using two confocal lenses in digital holography,” Jpn. J. Appl. Phys. 42, 6935–6936 (2003).
    [CrossRef]
  16. H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
    [CrossRef]
  17. J. Y. Son, S. A. Shestak, V. Epikhin, S. K. Kim, “A multichannel AOM for real time electro-holography,” Appl. Opt. 38, 3101–3104 (1999).
    [CrossRef]

2003 (1)

S.-K. Kim, H. Choi, J.-Y. Son, “Recording of high spatial frequency by using two confocal lenses in digital holography,” Jpn. J. Appl. Phys. 42, 6935–6936 (2003).
[CrossRef]

2001 (1)

T. Kreis, P. Aswendt, R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

2000 (1)

M. Sutkowski, M. Kujawinska, “Application of liquid crystal (LC) device for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

1999 (3)

1998 (1)

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

1997 (1)

1996 (2)

M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng. 35, 1529–1537 (1996).
[CrossRef]

N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
[CrossRef]

1994 (1)

1992 (1)

1969 (1)

S. A. Benton, “On a method for reducing the information content of holograms,” J. Opt. Soc. Am. 59, 1545A (1969).

1949 (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 38, 10 (1949).
[CrossRef]

Aswendt, P.

T. Kreis, P. Aswendt, R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Benton, S. A.

P. St. Hilaire, S. A. Benton, M. Lucente, “Synthetic aperture holography: a novel approach to three-dimensional displays,” J. Opt. Soc. Am. A 9, 1969–1979 (1992).
[CrossRef]

S. A. Benton, “On a method for reducing the information content of holograms,” J. Opt. Soc. Am. 59, 1545A (1969).

Choi, H.

S.-K. Kim, H. Choi, J.-Y. Son, “Recording of high spatial frequency by using two confocal lenses in digital holography,” Jpn. J. Appl. Phys. 42, 6935–6936 (2003).
[CrossRef]

H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
[CrossRef]

Choi, Y. J.

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Chun, J.-H.

S.-K. Kim, J.-Y. Son, J.-H. Chun, T.-K. Lim, “Holographic video system using Fourier transformation and data reduction,” Jpn. J. Appl. Phys. 38, 6379–6384 (1999).
[CrossRef]

Epikhin, V.

Fukaya, N.

N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
[CrossRef]

Hashimoto, N.

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Hilaire, P. St.

Hofling, R.

T. Kreis, P. Aswendt, R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Honda, T.

N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
[CrossRef]

Jeon, H. W.

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Kang, C. E.

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Kawai, H.

Kim, S. K.

J. Y. Son, S. A. Shestak, V. Epikhin, S. K. Kim, “A multichannel AOM for real time electro-holography,” Appl. Opt. 38, 3101–3104 (1999).
[CrossRef]

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Kim, S.-K.

S.-K. Kim, H. Choi, J.-Y. Son, “Recording of high spatial frequency by using two confocal lenses in digital holography,” Jpn. J. Appl. Phys. 42, 6935–6936 (2003).
[CrossRef]

S.-K. Kim, J.-Y. Son, J.-H. Chun, T.-K. Lim, “Holographic video system using Fourier transformation and data reduction,” Jpn. J. Appl. Phys. 38, 6379–6384 (1999).
[CrossRef]

H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
[CrossRef]

Kitamura, K.

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Kreis, T.

T. Kreis, P. Aswendt, R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Kujawinska, M.

M. Sutkowski, M. Kujawinska, “Application of liquid crystal (LC) device for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Lee, H. Y.

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Lim, T.-K.

S.-K. Kim, J.-Y. Son, J.-H. Chun, T.-K. Lim, “Holographic video system using Fourier transformation and data reduction,” Jpn. J. Appl. Phys. 38, 6379–6384 (1999).
[CrossRef]

Lucente, M.

Maeno, K.

N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
[CrossRef]

Morokawa, S.

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

Oh, H. S.

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Ohzu, H.

Sato, K.

N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
[CrossRef]

Schnars, U.

Shannon, C. E.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 38, 10 (1949).
[CrossRef]

Shestak, S. A.

J. Y. Son, S. A. Shestak, V. Epikhin, S. K. Kim, “A multichannel AOM for real time electro-holography,” Appl. Opt. 38, 3101–3104 (1999).
[CrossRef]

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
[CrossRef]

Son, J. Y.

J. Y. Son, S. A. Shestak, V. Epikhin, S. K. Kim, “A multichannel AOM for real time electro-holography,” Appl. Opt. 38, 3101–3104 (1999).
[CrossRef]

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

Son, J.-Y.

S.-K. Kim, H. Choi, J.-Y. Son, “Recording of high spatial frequency by using two confocal lenses in digital holography,” Jpn. J. Appl. Phys. 42, 6935–6936 (2003).
[CrossRef]

S.-K. Kim, J.-Y. Son, J.-H. Chun, T.-K. Lim, “Holographic video system using Fourier transformation and data reduction,” Jpn. J. Appl. Phys. 38, 6379–6384 (1999).
[CrossRef]

H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
[CrossRef]

Sutkowski, M.

M. Sutkowski, M. Kujawinska, “Application of liquid crystal (LC) device for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Takaki, Y.

Wu, J. W.

H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
[CrossRef]

Yamaguchi, I.

Zhang, T.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

S. A. Benton, “On a method for reducing the information content of holograms,” J. Opt. Soc. Am. 59, 1545A (1969).

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (3)

H. S. Oh, H. W. Jeon, S. A. Shestak, S. K. Kim, J. Y. Son, H. Y. Lee, Y. J. Choi, C. E. Kang, “Holographic video system with a pulse laser,” Jpn. J. Appl. Phys. 37, 1877–1881 (1998).
[CrossRef]

S.-K. Kim, J.-Y. Son, J.-H. Chun, T.-K. Lim, “Holographic video system using Fourier transformation and data reduction,” Jpn. J. Appl. Phys. 38, 6379–6384 (1999).
[CrossRef]

S.-K. Kim, H. Choi, J.-Y. Son, “Recording of high spatial frequency by using two confocal lenses in digital holography,” Jpn. J. Appl. Phys. 42, 6935–6936 (2003).
[CrossRef]

Opt. Eng. (3)

M. Lucente, “Holographic bandwidth compression using spatial subsampling,” Opt. Eng. 35, 1529–1537 (1996).
[CrossRef]

N. Fukaya, K. Maeno, K. Sato, T. Honda, “Improved electroholographic display using liquid crystal devices to shorten the viewing distance with both-eye observation,” Opt. Eng. 35, 1545–1549 (1996).
[CrossRef]

T. Kreis, P. Aswendt, R. Hofling, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Opt. Lasers Eng. (1)

M. Sutkowski, M. Kujawinska, “Application of liquid crystal (LC) device for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Opt. Lett. (1)

Proc. IRE (1)

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE 38, 10 (1949).
[CrossRef]

Other (3)

N. Hashimoto, S. Morokawa, K. Kitamura, “Real-time holography using the high-resolution LCTV-SLM,” in Practical Holography V, S. A. Benton, ed., Proc. SPIE1461, 291–302 (1991).

For more information, see http://spi.www.media.mit.edu/groups/spi/ .

H. Choi, S. A. Shestak, S.-K. Kim, J.-Y. Son, J. W. Wu, “Recent improvement of pulsed laser electro-holographic system,” in Practical Holography XVI and Holographic Materials VIII, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE4659, 76–82 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ray tracing in an optical setup with a confocal lens system.

Fig. 2
Fig. 2

Relations between the ray positions r f and r CCD and the initial ray slope r 0′ at the focal plane and the CCD plane. The solid (dotted) curve corresponds to the relation at the CCD (focal) plane. The dashed curves indicate the boundaries of the slit aperture. Also shown is the CCD size.

Fig. 3
Fig. 3

Structure of the AOSLM and the scan configuration of the pulse-laser electroholographic system: (a) the structure of a line-array six-channel AOSLM and the method for the CCD line data to feed into the AOSLM channels, (b) a top view of the spatiotemporal time-multiplexing scanning of the horizontal direction, and (c) a side view of the vertical direction scanning with a galvano scanner.

Fig. 4
Fig. 4

Interference patterns of the characters “3-D” with and without filtering at different object distances: (a) d′ = 200 mm, filtered image; (b) d′ = 200 mm, unfiltered image; (c) d′ = 425 mm, filtered image, and (d) d′ = 425 mm, unfiltered image.

Fig. 5
Fig. 5

Images reconstructed from the interference patterns of Fig. 4 by use of the EHDS: (a) the optically reconstructed image of Fig. 4(a), (b) the optically reconstructed image of Fig. 4(b), (c) the optically reconstructed image of Fig. 4(c), and (d) the optically reconstructed image of Fig. 4(d).

Fig. 6
Fig. 6

Images reconstructed from the interference patterns of Figs. 4(a) and 4(b), respectively, by use of the HPO-FFT algorithm: (a) the numerically reconstructed image of the filtered fringe pattern with d′ = 200 mm and (b) the numerically reconstructed image of the unfiltered fringe pattern with d′ = 200 mm.

Fig. 7
Fig. 7

Images reconstructed from the interference patterns of Figs. 4(c) and 4(d), respectively, by use of the HPO-FFT algorithm. (a) the numerically reconstructed image of the filtered fringe pattern with d′ = 425 mm and (b) the numerically reconstructed image of the unfiltered fringe pattern with d′ = 425 mm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2d sin θB=nλ.
k=k±K,
Ns=2bΛ2=4b sin θBλ2,
NsHPO=2b sin θBλ l,
rfrf=1f0110-1/f11d01r0r0=fr0r0-1fr0+dr0,
rccdrccd=1d0110-1/f112f0110-1/f1×1d01r0r0 =-r0-r0d+d-2f-r0,
Γm, n=exp-i πλdm2Δξ2+n2Δη2×k=0N-1l=0N-1 tk, l ×exp-i πλdk2Δx2+l2Δy2×expi 2πλdkΔxmΔξ+lΔynΔη, m=0, 1, 2,, N-1; n=0, 1, 2,, N-1,
Γm, n=exp-i πλdm2Δξ2+n2Δη2×k=0N-1 tk, nexp-i πλdk2Δx2+n2Δy2×exp2πλdkΔxmΔξ+nΔynΔη,
Γm, n=exp-iπλdm2N2Δx2+n2N2Δy2×k=0N-1 tk, nexp-i πλdk2Δx2+n2Δy2×exp2πkmN+n2N, m=0, 1, 2,, N-1, n=0, 1, 2,, N-1.
Di=2f2-ifi-f+d,
1i=1f-1d.

Metrics