Abstract

A three-dimensional feed-horn antenna for the 10-μm-wavelength infrared region has been suggested, characterized, and fabricated. It is applied to an infrared detector for efficient collection of infrared radiation and to reduce background noise. The optimum size of the horn antenna was designed for maximum antenna directivity. The three-dimensional feed-horn antenna mold was fabricated by rotating and tilting illumination, whereas the antenna plate was acquired through electroplating. Antenna characteristics were measured by coupling of the antenna with a microbolometer. Measurement results show that the directivity of the antenna is 16.1 dB and the background noise is reduced by a factor of ∼2 compared with an open-structure infrared detector.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Rutledge, M. S. Muha, “Imaging antenna array,” IEEE Trans. Antennas Propag. AP-30, 535–540 (1982).
    [CrossRef]
  2. G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
    [CrossRef]
  3. C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
    [CrossRef]
  4. I. Godreanu, G. D. Boreman, “Integration of microbolometers with an infrared microstrip antenna,” Infrared Phys. Technol. 43, 335–344 (2002).
    [CrossRef]
  5. A. Luukanen, J. P. Pekola, “A superconducting antenna-coupled hot-spot microbolometer,” Appl. Phys. Lett. 82, 3970–3972 (2003).
    [CrossRef]
  6. L. S. Kuzmin, “On the concept of a hot-electron microbolometer with capacitive coupling to the antenna,” Physica B 284-288, 2129–2130 (2000).
    [CrossRef]
  7. N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
    [CrossRef]
  8. J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
    [CrossRef]
  9. K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
    [CrossRef]
  10. J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
    [CrossRef]
  11. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

2004 (2)

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

2003 (2)

A. Luukanen, J. P. Pekola, “A superconducting antenna-coupled hot-spot microbolometer,” Appl. Phys. Lett. 82, 3970–3972 (2003).
[CrossRef]

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

2002 (1)

I. Godreanu, G. D. Boreman, “Integration of microbolometers with an infrared microstrip antenna,” Infrared Phys. Technol. 43, 335–344 (2002).
[CrossRef]

2000 (2)

L. S. Kuzmin, “On the concept of a hot-electron microbolometer with capacitive coupling to the antenna,” Physica B 284-288, 2129–2130 (2000).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

1998 (1)

C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

1997 (1)

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

1982 (1)

D. B. Rutledge, M. S. Muha, “Imaging antenna array,” IEEE Trans. Antennas Propag. AP-30, 535–540 (1982).
[CrossRef]

Ahmed, H.

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

Alda, J.

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Bock, J. J.

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Boreman, G. D.

I. Godreanu, G. D. Boreman, “Integration of microbolometers with an infrared microstrip antenna,” Infrared Phys. Technol. 43, 335–344 (2002).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

Chattopadhyay, G.

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Chong, N.

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

Fumeaux, C.

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Galdwell, M.

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Glenn, J.

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Godreanu, I.

I. Godreanu, G. D. Boreman, “Integration of microbolometers with an infrared microstrip antenna,” Infrared Phys. Technol. 43, 335–344 (2002).
[CrossRef]

Griffin, M. J.

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Gritz, M. A.

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

Han, Y.-H.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

Herrmann, W.

C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Kang, H.-K.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

Kim, K.-T.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

Kneubuhl, F. K.

C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Kuzmin, L. S.

L. S. Kuzmin, “On the concept of a hot-electron microbolometer with capacitive coupling to the antenna,” Physica B 284-288, 2129–2130 (2000).
[CrossRef]

Luukanen, A.

A. Luukanen, J. P. Pekola, “A superconducting antenna-coupled hot-spot microbolometer,” Appl. Phys. Lett. 82, 3970–3972 (2003).
[CrossRef]

Moon, S.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

Muha, M. S.

D. B. Rutledge, M. S. Muha, “Imaging antenna array,” IEEE Trans. Antennas Propag. AP-30, 535–540 (1982).
[CrossRef]

Pak, J. J.

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

Park, J. Y.

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

Park, J.-H.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

Park, J.-Y.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

Pekola, J. P.

A. Luukanen, J. P. Pekola, “A superconducting antenna-coupled hot-spot microbolometer,” Appl. Phys. Lett. 82, 3970–3972 (2003).
[CrossRef]

Rothuizen, H.

C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

Rownd, B. K.

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Rutledge, D. B.

D. B. Rutledge, M. S. Muha, “Imaging antenna array,” IEEE Trans. Antennas Propag. AP-30, 535–540 (1982).
[CrossRef]

Shin, H.-J.

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

Spencer, D.

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

A. Luukanen, J. P. Pekola, “A superconducting antenna-coupled hot-spot microbolometer,” Appl. Phys. Lett. 82, 3970–3972 (2003).
[CrossRef]

N. Chong, H. Ahmed, “Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation,” Appl. Phys. Lett. 71, 1607–1609 (1997).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

D. B. Rutledge, M. S. Muha, “Imaging antenna array,” IEEE Trans. Antennas Propag. AP-30, 535–540 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

G. Chattopadhyay, J. Glenn, J. J. Bock, B. K. Rownd, M. Galdwell, M. J. Griffin, “Feed horn coupled bolometer arrays for SPIRE—design, simulations, and measurements,” IEEE Trans. Microwave Theory Tech. 51, 2139–2146 (2003).
[CrossRef]

Infrared Phys. Technol. (3)

C. Fumeaux, W. Herrmann, F. K. Kneubuhl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

I. Godreanu, G. D. Boreman, “Integration of microbolometers with an infrared microstrip antenna,” Infrared Phys. Technol. 43, 335–344 (2002).
[CrossRef]

J. Alda, C. Fumeaux, M. A. Gritz, D. Spencer, G. D. Boreman, “Responsivity of infrared antenna-coupled microbolometers for air-side and substrate-side illumination,” Infrared Phys. Technol. 41, 1–99 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Y. Park, K.-T. Kim, H.-J. Shin, S. Moon, J. J. Pak, “Feed-horn antenna for enhanced uncooled infrared sensor using novel UV-lithography, plastic micromachining and mesh structure bonding,” Jpn. J. Appl. Phys. 43, 3320–3327 (2004).
[CrossRef]

Physica B (1)

L. S. Kuzmin, “On the concept of a hot-electron microbolometer with capacitive coupling to the antenna,” Physica B 284-288, 2129–2130 (2000).
[CrossRef]

Sensors Actuators A (1)

K.-T. Kim, J.-Y. Park, Y.-H. Han, H.-K. Kang, H.-J. Shin, S. Moon, J.-H. Park, “3D-feed horn antenna-coupled microbolometer,” Sensors Actuators A 110, 196–205 (2004).
[CrossRef]

Other (1)

C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Superiority of the antenna coupled IR detector: (a) Conventional open-structure IR detector, (b) 3D feed-horn antenna coupled IR detector.

Fig. 2
Fig. 2

Comparison of directivity for three flare angles.

Fig. 3
Fig. 3

Dimensions of the designed antenna.

Fig. 4
Fig. 4

Simulation results of the designed antenna.

Fig. 5
Fig. 5

Spherical coordinates for a point source of radiation in free space.

Fig. 6
Fig. 6

SEM image of the fabricated horn-shaped mold of the antenna.

Fig. 7
Fig. 7

Steps in fabrication of the antenna plate.

Fig. 8
Fig. 8

SEM image of the released antenna plate.

Fig. 9
Fig. 9

SEM image of the fabricated microbolometer.

Fig. 10
Fig. 10

SEM image of the final antenna coupled IR detector obtained by PDMS injection bonding.

Fig. 11
Fig. 11

Schematic view of the antenna’s directivity measurement setup.

Fig. 12
Fig. 12

Comparison of directivity of the antenna coupled device with that of the open-structure device.

Fig. 13
Fig. 13

Dimensions of the fabricated antenna.

Fig. 14
Fig. 14

Simulation result of the fabricated antenna.

Fig. 15
Fig. 15

Comparison of background noise of the antenna coupled device with that of the open-structure device.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

DcdB=10 log10εap4πλ2πa2=10 log10Cλ2-Ls,Ls=-10 log10εap0.8-1.71s+26.25s2-17.79s3,s=dm28λl,
D0=4π/ΩA4π/θ1rθ2r,ΩAθ1rθ2r,θ=θ1r=θ2r,
D04π180/π2/θ1dθ2d=41,253/θ1dθ2d,
W=02π0π/2 Um sin θdθdφ.
Wo=02π0ω U1 sin θdθdφ+02πωπ/2 U2 sin θdθdφ.
Wa=02π0ω U1 sin θdθdφ.
WoWa=1+02πωπ/2 U2 sin θdθdφ02π0ω U1 sin θdθdφ.

Metrics