Abstract

Laboratory breadboard results of a high-speed adaptive-optics system are presented. The wave-front sensor for the adaptive-optics system is based on a quadrature interferometer, which directly measures the turbulence-induced phase aberrations. The spatial light modulator used in the phase-conjugate engine was a microelectromechanical systems-based piston-only correction device with 1024 actuators. Laboratory experiments were conducted with this system utilizing Kolmogorov phase screens to simulate atmospheric phase distortions. The adaptive-optics system achieved correction speeds in excess of 800 Hz and Strehl ratios greater than 0.5 with the Kolmogorov phase screens.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, 1998).
  2. R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1998).
  3. R. Dou, M. K. Giles, “Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,” Opt. Lett. 20, 1583 (1995).
    [CrossRef] [PubMed]
  4. T. Shirai, T. H. Barnes, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773 (2000).
    [CrossRef]
  5. K. L. Baker, E. A. Stappaerts, S. C. Wilks, P. E. Young, D. Gavel, J. Tucker, D. A. Silva, S. S. Olivier, “Open- and closed-loop aberration correction using a quadrature interferometric wave-front sensor,” Opt. Lett. 29, 47–49 (2004).
    [CrossRef] [PubMed]
  6. C. J. Buchenauer, A. R. Jacobson, “Quadrature interferometer for plasma density measurements,” Rev. Sci. Instrum. 48, 769–774 (1977).
    [CrossRef]
  7. K. L. Baker, E. A. Stappaerts, S. C. Wilks, D. Gavel, P. E. Young, J. Tucker, D. A. Silva, S. S. Olivier, J. Olsen, “Performance of a phase-conjugate engine implementing a finite-bit phase correction,” Opt. Lett. 29, 980–982 (2004).
    [CrossRef] [PubMed]
  8. K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
    [CrossRef]
  9. T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14, 2692–2701 (1997).
    [CrossRef]
  10. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. A 56, 1372–1379 (1966).
    [CrossRef]
  11. D. P. Greenwood, “Bandwidth specification for adaptive-optics systems,” J. Opt. Soc. Am. A 67, 390–393 (1977).
    [CrossRef]
  12. R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. A 67, 393–395 (1977).
    [CrossRef]
  13. G. D. Love, N. Andrews, P. Burch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995).
    [CrossRef] [PubMed]

2004 (2)

2000 (1)

1997 (1)

1995 (2)

1977 (3)

C. J. Buchenauer, A. R. Jacobson, “Quadrature interferometer for plasma density measurements,” Rev. Sci. Instrum. 48, 769–774 (1977).
[CrossRef]

D. P. Greenwood, “Bandwidth specification for adaptive-optics systems,” J. Opt. Soc. Am. A 67, 390–393 (1977).
[CrossRef]

R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. A 67, 393–395 (1977).
[CrossRef]

1966 (1)

D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. A 56, 1372–1379 (1966).
[CrossRef]

Andrews, N.

Baker, K. L.

Barnes, T. H.

Billman, K. W.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Breakwell, J. A.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Brennan, T. J.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Buchenauer, C. J.

C. J. Buchenauer, A. R. Jacobson, “Quadrature interferometer for plasma density measurements,” Rev. Sci. Instrum. 48, 769–774 (1977).
[CrossRef]

Burch, P.

Buscher, D.

Doel, P.

Dou, R.

Dunlop, C.

Dutta, K.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Flynn, T. J.

Fried, D. L.

D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. A 56, 1372–1379 (1966).
[CrossRef]

Gavel, D.

Giles, M. K.

Glindemann, A.

Granger, Z. A.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Greenwood, D. P.

D. P. Greenwood, “Bandwidth specification for adaptive-optics systems,” J. Opt. Soc. Am. A 67, 390–393 (1977).
[CrossRef]

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, 1998).

Haskell, T. G.

Holmes, R. B.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Hudgin, R.

R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. A 67, 393–395 (1977).
[CrossRef]

Jacobson, A. R.

C. J. Buchenauer, A. R. Jacobson, “Quadrature interferometer for plasma density measurements,” Rev. Sci. Instrum. 48, 769–774 (1977).
[CrossRef]

Kelchner, B. L.

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

Love, G. D.

Major, J.

Myers, R.

Olivier, S. S.

Olsen, J.

Purvis, A.

Restaino, S. R.

Sharples, R.

Shirai, T.

Silva, D. A.

Stappaerts, E. A.

Tucker, J.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1998).

Vick, A.

Wilks, S. C.

Young, P. E.

Zadrozny, A.

Appl. Opt. (1)

J. Opt. Soc. Am. A (4)

T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted discontinuity,” J. Opt. Soc. Am. A 14, 2692–2701 (1997).
[CrossRef]

D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. A 56, 1372–1379 (1966).
[CrossRef]

D. P. Greenwood, “Bandwidth specification for adaptive-optics systems,” J. Opt. Soc. Am. A 67, 390–393 (1977).
[CrossRef]

R. Hudgin, “Wave-front compensation error due to finite corrector-element size,” J. Opt. Soc. Am. A 67, 393–395 (1977).
[CrossRef]

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

C. J. Buchenauer, A. R. Jacobson, “Quadrature interferometer for plasma density measurements,” Rev. Sci. Instrum. 48, 769–774 (1977).
[CrossRef]

Other (3)

K. W. Billman, J. A. Breakwell, R. B. Holmes, K. Dutta, Z. A. Granger, T. J. Brennan, B. L. Kelchner, “ABL Beam Control Laboratory Demonstrator,” in Airborne Laser Advanced Technology II, T. D. Steiner, P. H. Merritt, eds., Proc. SPIE3706, 172–179 (1999).
[CrossRef]

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, 1998).

R. K. Tyson, Principles of Adaptive Optics (Academic, Boston, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Breadboard setup used to test the performance of the phase-conjugate engine in a controlled laboratory environment: BS, beam splitter; M, mirror; L, lens; S, shutter; A, aperture; TFP, thin-film polarizer; λ/2, half-wave plate; λ/4, QWP.

Fig. 2
Fig. 2

Phase profile across the aperture of the probe beam passing through the three phase plates. This particular phase profile was determined from a single set of sine and cosine interferograms: (a) wrapped phase, (b) unwrapped phase, (c) resultant structure function.

Fig. 3
Fig. 3

PSF’s measured with the aberrating phase plates rotating (a) for a single frame and (b) for 100 frames added together after centroid registration to a common location.

Fig. 4
Fig. 4

Fit to the radially averaged PSF. The shaded curve denotes the numerically determined PSF for a short-time-exposure Kolmogorov turbulence spectrum. The solid curve denotes the radially averaged PSF from the averaged experimentally measured far-fields.

Fig. 5
Fig. 5

Phase-plate geometry showing the 11.4-mm projection of the aperture on the phase plate.

Fig. 6
Fig. 6

Phase as a function of time for a single pixel on the wave-front camera.

Fig. 7
Fig. 7

Temporal power spectrum for four separate voltages applied to the phase plates. The resulting velocities at the centers of the apertures are given in each graph. The experimentally determined temporal power spectrum is displayed as the solid curve in each graph, and the analytical Kolmogorov fit is displayed as a shaded curve. For each graph, the analytical fittings used a Fried parameter of r 0 = 1.3 mm and the transverse plate velocity in the exact center of the aperture. Exper., experimental.

Fig. 8
Fig. 8

PSF’s used to determine the Strehl ratio: (a) The ideal PSF given the near-field image and the total energy measured in (b). (b) The measured PSF. Lineouts through the center of the PSF for the ideal PSF (shaded curve) and the measured PSF (solid curve) in (c) the horizontal direction and (d) the vertical direction.

Fig. 9
Fig. 9

Absolute Strehl ratios for 100 separate frames taken as the phase plates are rotated. The different curves represent different transverse velocities at the center of the aperture.

Fig. 10
Fig. 10

Absolute Strehl ratios averaged across 100 separate frames. The experimental data are represented by the solid curve, and a fit to the data under assumption of a Kolmogorov turbulence spectrum is given by the shaded curve. The error bars denote the standard deviation of the Strehl ratios, across 100 images, displayed in Fig. 9.

Fig. 11
Fig. 11

PSF’s for the uncorrected and the corrected probe beams after propagation through the phase plates.

Metrics