Abstract

We describe the fabrication and characterization of a high-quality spiral phase plate as a device to generate optical vortices of low (3–5) specified charge at visible wavelengths. The manufacturing process is based on a molding technique and allows for the production of high-precision, smooth spiral phase plates as well as for their replication. An attractive feature of this process is that it permits the fabrication of nominally identical spiral phase plates made from different materials and thus yielding different vortex charges. When such a plate is inserted in the waist of a fundamental Gaussian beam, the resultant far-field intensity profile shows a rich vortex structure, in excellent agreement with diffraction calculations based on ideal spiral phase plates. Using a simple optical test, we show that the reproducibility of the manufacturing process is excellent.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [CrossRef] [PubMed]
  2. A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
    [CrossRef]
  3. A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
    [CrossRef]
  4. S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
    [CrossRef]
  5. E. M. Wright, J. Arlt, K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608(2000).
    [CrossRef]
  6. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [CrossRef] [PubMed]
  7. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [CrossRef] [PubMed]
  8. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, Bristol, UK, 1999).
  9. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [CrossRef]
  10. J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
    [CrossRef]
  11. A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [CrossRef] [PubMed]
  12. S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
    [CrossRef]
  13. M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
    [CrossRef]
  14. H. H. Arnaut, G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
    [CrossRef] [PubMed]
  15. E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
    [CrossRef] [PubMed]
  16. H. H. Arnaut, G. A. Barbosa, “Reply: Arnaut and Barbosa,” Phys. Rev. Lett. 86, 5209(2001).
    [CrossRef]
  17. V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
    [CrossRef]
  18. I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
    [CrossRef]
  19. I. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
    [CrossRef]
  20. A. G. Peele, P. J. McMahon, D. Paterson, C. Q. Tran, A. P. Mancuso, K. A. Nugent, J. P. Hayes, E. Harvey, B. Lai, I. McNulty, “Observation of an x-ray vortex,” Opt. Lett. 27, 1752–1754 (2002).
    [CrossRef]
  21. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
    [CrossRef] [PubMed]
  22. J. Andrea, “Mass-production of diffraction limited replicated objective lenses for compact-disc players,” in Micromachining of Elements with Optical and Other Submicrometer Dimensional and Surface Specifications, M. Weck, ed., Proc. SPIE803, 3–7 (1987).
    [CrossRef]
  23. T. G. Gijsbers, “COLATH, a numerical controlled lathe for very high precision,” Philips Tech. Rev. 39, 229–244 (1980).
  24. A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901(2001).
    [CrossRef] [PubMed]
  25. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
    [CrossRef]
  26. S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

2002

A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
[CrossRef]

A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
[CrossRef]

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

A. G. Peele, P. J. McMahon, D. Paterson, C. Q. Tran, A. P. Mancuso, K. A. Nugent, J. P. Hayes, E. Harvey, B. Lai, I. McNulty, “Observation of an x-ray vortex,” Opt. Lett. 27, 1752–1754 (2002).
[CrossRef]

2001

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901(2001).
[CrossRef] [PubMed]

E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
[CrossRef] [PubMed]

H. H. Arnaut, G. A. Barbosa, “Reply: Arnaut and Barbosa,” Phys. Rev. Lett. 86, 5209(2001).
[CrossRef]

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

2000

H. H. Arnaut, G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[CrossRef] [PubMed]

E. M. Wright, J. Arlt, K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608(2000).
[CrossRef]

1999

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[CrossRef]

1998

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

1996

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

1995

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

I. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
[CrossRef]

1994

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

1993

I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
[CrossRef]

S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient radially polarized laser beam generation with a double interferometer,” Appl. Opt. 32, 5222–5229 (1993).
[CrossRef] [PubMed]

1992

V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

1980

T. G. Gijsbers, “COLATH, a numerical controlled lathe for very high precision,” Philips Tech. Rev. 39, 229–244 (1980).

Allen, L.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
[CrossRef]

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
[CrossRef]

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Andrea, J.

J. Andrea, “Mass-production of diffraction limited replicated objective lenses for compact-disc players,” in Micromachining of Elements with Optical and Other Submicrometer Dimensional and Surface Specifications, M. Weck, ed., Proc. SPIE803, 3–7 (1987).
[CrossRef]

Arlt, J.

E. M. Wright, J. Arlt, K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608(2000).
[CrossRef]

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[CrossRef]

Arnaut, H. H.

H. H. Arnaut, G. A. Barbosa, “Reply: Arnaut and Barbosa,” Phys. Rev. Lett. 86, 5209(2001).
[CrossRef]

H. H. Arnaut, G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[CrossRef] [PubMed]

Barbosa, G. A.

H. H. Arnaut, G. A. Barbosa, “Reply: Arnaut and Barbosa,” Phys. Rev. Lett. 86, 5209(2001).
[CrossRef]

H. H. Arnaut, G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[CrossRef] [PubMed]

Barnett, S. M.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
[CrossRef]

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

Basistiy, I.

I. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
[CrossRef]

I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

Bazhenov, V. Y.

I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Bekshaev, A. Y.

A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
[CrossRef]

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Courtial, J.

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

Denisenko, V. G.

A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
[CrossRef]

Dholakia, K.

E. M. Wright, J. Arlt, K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608(2000).
[CrossRef]

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[CrossRef]

Dutra, S. M.

E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
[CrossRef] [PubMed]

Eliel, E. R.

E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
[CrossRef] [PubMed]

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

Ertmer, W.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Franke-Arnold, S.

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Gijsbers, T. G.

T. G. Gijsbers, “COLATH, a numerical controlled lathe for very high precision,” Philips Tech. Rev. 39, 229–244 (1980).

Harvey, E.

Hayes, J. P.

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Herrmann, J.

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901(2001).
[CrossRef] [PubMed]

Hooft, G. W.’t

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Husakou, A. V.

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901(2001).
[CrossRef] [PubMed]

Indebetouw, G.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
[CrossRef]

Kim, G. H.

Kimura, W. D.

Kloosterboer, J. G.

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Kuppens, S.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Lai, B.

MacVicar, I.

A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Mancuso, A. P.

McMahon, P. J.

McNulty, I.

Nienhuis, G.

E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
[CrossRef] [PubMed]

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Nugent, K. A.

Nye, J. F.

J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, Bristol, UK, 1999).

O’Neill, A. T.

A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
[CrossRef]

Oemrawsingh, S. S. R.

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Padgett, M.

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

Padgett, M. J.

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
[CrossRef]

A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
[CrossRef]

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[CrossRef]

Paterson, D.

Peele, A. G.

Rauner, M.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Rubinsztein-Dunlop, H.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

Schiffer, M.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Sengstock, K.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Soskin, M. S.

A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
[CrossRef]

I. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
[CrossRef]

I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

Tidwell, S. C.

Tran, C. Q.

van Dorsselaer, F. E.

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

Vasnetsov, M. V.

A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
[CrossRef]

I. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
[CrossRef]

I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Verstegen, E. J. K.

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Woerdman, J. P.

E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
[CrossRef] [PubMed]

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

Wright, E. M.

E. M. Wright, J. Arlt, K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608(2000).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Appl. Opt.

J. Mod. Opt.

V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992).
[CrossRef]

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993).
[CrossRef]

M. Padgett, J. Courtial, L. Allen, S. Franke-Arnold, S. M. Barnett, “Entanglement of orbital angular momentum for the signal and idler beams in parametric downconversion,” J. Mod. Opt. 49, 777–785 (2002).
[CrossRef]

JETP Lett.

A. Y. Bekshaev, M. V. Vasnetsov, V. G. Denisenko, M. S. Soskin, “Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system,” JETP Lett. 75, 127–130 (2002).
[CrossRef]

Nature

A. Mair, A. Vaziri, G. Weihs, A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[CrossRef] [PubMed]

Opt. Commun.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

I. Basistiy, V. Y. Bazhenov, M. S. Soskin, M. V. Vasnetsov, “Optics of light beams with screw dislocations,” Opt. Commun. 103, 422–428 (1993).
[CrossRef]

I. Basistiy, M. S. Soskin, M. V. Vasnetsov, “Optical wavefront dislocations and their properties,” Opt. Commun. 119, 604–612 (1995).
[CrossRef]

Opt. Lett.

Philips Tech. Rev.

T. G. Gijsbers, “COLATH, a numerical controlled lathe for very high precision,” Philips Tech. Rev. 39, 229–244 (1980).

Phys. Rev. A

J. Arlt, K. Dholakia, L. Allen, M. J. Padgett, “Parametric down-conversion for light beams possessing orbital angular momentum,” Phys. Rev. A 59, 3950–3952 (1999).
[CrossRef]

S. Franke-Arnold, S. M. Barnett, M. J. Padgett, L. Allen, “Two-photon entanglement of orbital angular momentum states,” Phys. Rev. A 65, 033823(2002).
[CrossRef]

S. Kuppens, M. Rauner, M. Schiffer, K. Sengstock, W. Ertmer, F. E. van Dorsselaer, G. Nienhuis, “Polarization-gradient cooling in a strong doughnut-mode dipole potential,” Phys. Rev. A 58, 3068–3078 (1998).
[CrossRef]

E. M. Wright, J. Arlt, K. Dholakia, “Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams,” Phys. Rev. A 63, 013608(2000).
[CrossRef]

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, “Orbital angular momentum of light and the transformations of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[CrossRef] [PubMed]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. T. O’Neill, I. MacVicar, L. Allen, M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601(2002).
[CrossRef]

H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[CrossRef] [PubMed]

H. H. Arnaut, G. A. Barbosa, “Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 85, 286–289 (2000).
[CrossRef] [PubMed]

E. R. Eliel, S. M. Dutra, G. Nienhuis, J. P. Woerdman, “Comment on ‘Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion,” Phys. Rev. Lett. 86, 5208(2001).
[CrossRef] [PubMed]

H. H. Arnaut, G. A. Barbosa, “Reply: Arnaut and Barbosa,” Phys. Rev. Lett. 86, 5209(2001).
[CrossRef]

A. V. Husakou, J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87, 203901(2001).
[CrossRef] [PubMed]

Other

S. S. R. Oemrawsingh, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, G. W.’t Hooft, “Half-integral spiral phase plates for optical wavelengths,” submitted to J. Opt. A.

J. Andrea, “Mass-production of diffraction limited replicated objective lenses for compact-disc players,” in Micromachining of Elements with Optical and Other Submicrometer Dimensional and Surface Specifications, M. Weck, ed., Proc. SPIE803, 3–7 (1987).
[CrossRef]

J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics, Bristol, UK, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sketch of the spiral phase plate. The top surface spirals upward from height h 0 to h 0 + h s .

Fig. 2
Fig. 2

Phase distribution imprinted onto the transverse plane of an incident beam. When Q is an integer number, the phase change at the transition from black to white is actually smooth. Otherwise, the sharp transition in gray level represents a phase discontinuity.

Fig. 3
Fig. 3

These figures, based on high-accuracy data from the Zygo interferometric metrology system, demonstrate the quality of the mold. (a) The depth of the mold is plotted following an azimuthal path with a radius of ≈4 mm, revealing a smooth ramp. The steepness of the step can also be seen clearly. There the mold’s depth increases from 0 to 5.07 μm over an azimuthal range of ∼6°. The vertical, dashed line indicates the position at which the bottom figure was measured. (b) Depth of the mold plotted along a radial path at an azimuthal angle ≈151°. The deviation from the expected horizontal line is ∼150 nm, which is considerably smaller than the optical wavelength at which the device is designed to work (813 nm). The vertical, dashed line indicates the position at which the top figure was measured.

Fig. 4
Fig. 4

Schematic overview of the production of a spiral phase plate. The monomer is cast into the mold, and a spacer is placed around it. A glass cover plate is pressed against the monomer and onto the spacer, after which the monomer is cured by illumination by UV light to a cross-linked polymer network.

Fig. 5
Fig. 5

CCD images captured with a phase-contrast microscope that is looking at light (wavelength, 549 nm) reflected off the surface of a spiral phase plate, produced with the mold shown in Fig. 3. (a) The fringe spacing remains constant over the angular direction of the plate. The center is dominated by the finite size of the height anomaly. (b) Close-up of the step located in the region indicated by the box at the bottom of (a). In reality, the part of the step that is shown in (b) lies much farther away from the center of the device. The step has an angular width of ∼6°. (c) Close-up of the height anomaly at the center as suggested by the box in the middle of (a); the size of this anomaly is very small (≤50 μm, to be compared with the SPP’s diameter of 8.4 mm). The small dots are blemishes not in the spiral phase plate but rather in the imaging system.

Fig. 6
Fig. 6

The angular position of each dark fringe on the ramp as it occurs in Fig. 5(a) is measured, converted to a height, and plotted as a point here. The line shows a linear fit, demonstrating the excellent linearity of the ramp.

Fig. 7
Fig. 7

Top, far-field diffraction patterns of fundamental Gaussian beams of different wavelengths that have passed through the spiral phase plate with its step oriented upward. Bottom, calculated far-field diffraction patterns with different values of Q. Black and white correspond to low and high intensities, respectively. For each of the calculated patterns the value of Q (given below the pattern) was adjusted to visually match the experimentally obtained diffraction patterns. The zero intensity spots near the center and those to the right in both the experimental and the calculated patterns correspond to phase singularities.

Fig. 8
Fig. 8

Demonstration of ways in which one may detect errors in the structure of the phase plates by combining devices from the same mold in such a way that, ideally, the effects of the two devices cancel. (a) If reproducibility is bad, e.g., if each device shrinks differently during polymerization, the devices will not complement each other. (b) If the ramp of one device contains a flaw, the second device will also contain that flaw but at a different angular position. (c) Perfect devices and perfect reproducibility; the SPPs complement each other.

Fig. 9
Fig. 9

Illustration of how to invert the vorticity of a SPP. The left-hand device, with a clockwise vorticity as indicated by the gray-scale gradient, is flipped by 180° about the vertical dotted line, which is parallel to the step. The result is the device at the right, with counterclockwise vorticity.

Fig. 10
Fig. 10

A He-Ne beam is allowed to propagate through two nominally identical, opposite-vorticity SPPs, each placed in the other’s near field. The output beam is coupled into a single-mode fiber. The beam intensity after the fiber is 98% of the intensity when no SPPs are inserted in the beam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

uρ, θ, z=uρ, zexpiQθ,
Q=12π  dχ,
h=hsθ2π+h0,
ϕθ, λ=2πλn-n0hsθ2π+nh0,

Metrics