Abstract

A semiactive method of Fourier-transform infrared (FTIR) remote sensing has been developed and field tested. The method replaces the sender telescope of an active technique with an extended, heated broadband source. The output of the extended source (a commercial griddle) is not collimated and thus facilitates alignment by having the detector optics simply point at the griddle. The present source fills the detector’s field of view at 100 m and maintains a temperature ∼80 K warmer than ambient. In field tests with live CO releases, the method was ∼30 times less sensitive than active methods, but ∼30 times more sensitive than passive methods, with far greater sensitivity in the midwave infrared.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Russwurm, J. W. Childers, “FT-IR open-path monitoring guidance document,” EPA/600/R-96/040 National Exposure Research Laboratory (U.S. Environmental Protection Agency, Washington, D.C., 1996).
  2. U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
    [CrossRef]
  3. J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
    [CrossRef]
  4. T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001).
    [CrossRef]
  5. K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
    [CrossRef]
  6. D. W. T. Griffith, I. M. Jamie, “Fourier transform infrared spectroscopy in atmospheric and trace gas analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000).
  7. D. F. Flanigan, “Detection of organic vapors with active and passive sensors: a comparison,” Appl. Opt. 25, 4253–4260 (1986).
    [CrossRef] [PubMed]
  8. W. F. Herget, “Remote and cross-stack measurement of stack gas concentrations using a mobile FT-IR system,” Appl. Opt. 21, 635–642 (1982).
    [CrossRef] [PubMed]
  9. D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).
  10. S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
    [CrossRef]
  11. F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
    [CrossRef]
  12. D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN,” Appl. Opt. 35, 6090–6098 (1996).
    [CrossRef] [PubMed]
  13. J.-M. Thėriault, C. Bradette, L. Moreau, “Passive remote monitoring of chemical vapors with a Fourier transform infrared spectrometer,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 962–972 (2000).
    [CrossRef]
  14. J.-M. Thėriault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform interferometer,” Appl. Opt. 38, 505–515 (1999).
    [CrossRef]
  15. R. Beer, Remote Sensing by Fourier Transform Spectroscopy (Wiley, New York, 1992).
  16. T. J. Johnson, “Methods and systems for remote detection of gases,” U.S. patent application filed, 23April2003.
  17. R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Moserbach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
    [CrossRef] [PubMed]
  18. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  19. A. Beil, R. Daum, T. J. Johnson, “Detection of chemical agents in the atmosphere by passive IR remote sensing,” in Internal Standardization and Calibration Architectures for Chemical Sensors, R. E. Shaffer, R. A. Potyrailo, eds., Proc. SPIE3856, 44–56 (1999).
    [CrossRef]
  20. F. G. Smith, ed., Atmospheric Propagation of Radiation, Vol. 2 of The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds., Vol. 10 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1983).
  21. M. L. Polak, J. L. Hall, K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995).
    [CrossRef] [PubMed]
  22. J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
    [CrossRef]
  23. S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
    [CrossRef]
  24. See the PNNL website http:://nwir.pnl.gov .
  25. S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.
  26. T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002).
    [CrossRef] [PubMed]
  27. P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
    [CrossRef]
  28. S. Wilkinson, “DOE welcomes Hazmat spill research, training,” Chem. Eng. News 75(39), 34–35 (1997).
    [CrossRef]
  29. A. G. Maki, J. S. Wells, Wavenumber Calibration Tables from Heterodyne Frequency Measurements, NIST Special Pub. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1991).
  30. C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983).
    [CrossRef]
  31. E. L. Dereniak, D. G. Boreman, Infrared Detectors and Systems (Wiley-Interscience, New York, 1996), p. 528 ff.
  32. G. W. Small, R. T. Kroutil, J. T. Ditillo, “Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms,” Anal. Chem. 60, 264–269 (1988).
    [CrossRef] [PubMed]
  33. A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
    [CrossRef]
  34. D. W. T. Griffith, “Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra,” Appl. Spectrosc. 50, 59–70 (1996).
    [CrossRef]
  35. M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
    [CrossRef] [PubMed]
  36. C. D. Whiteman, Mountain Meteorology: Fundamentals and Applications (Oxford U. Press, Oxford, UK, 2000), pp. 212–216.
  37. S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001).
    [CrossRef]
  38. M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
    [CrossRef] [PubMed]
  39. K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513–516 (1999).
    [CrossRef] [PubMed]
  40. P. L. Roney, F. Reid, J.-M. Thėriault, “Transmission window near 2400 cm-1: an experimental and modeling study,” Appl. Opt. 30, 1995–2004 (1991).
    [CrossRef] [PubMed]
  41. J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928).
    [CrossRef]
  42. T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
    [CrossRef] [PubMed]

2002 (1)

2001 (4)

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001).
[CrossRef]

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001).
[CrossRef]

2000 (3)

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
[CrossRef] [PubMed]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef] [PubMed]

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

1999 (4)

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

J.-M. Thėriault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform interferometer,” Appl. Opt. 38, 505–515 (1999).
[CrossRef]

K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513–516 (1999).
[CrossRef] [PubMed]

1998 (2)

J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
[CrossRef]

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

1997 (2)

S. Wilkinson, “DOE welcomes Hazmat spill research, training,” Chem. Eng. News 75(39), 34–35 (1997).
[CrossRef]

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

1996 (2)

1995 (1)

1994 (1)

1991 (2)

1988 (2)

1986 (1)

1983 (1)

C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983).
[CrossRef]

1982 (1)

1928 (1)

J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928).
[CrossRef]

Bangalore, A. S.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

Bautzer, W.

Beer, R.

R. Beer, Remote Sensing by Fourier Transform Spectroscopy (Wiley, New York, 1992).

Beil, A.

A. Beil, R. Daum, T. J. Johnson, “Detection of chemical agents in the atmosphere by passive IR remote sensing,” in Internal Standardization and Calibration Architectures for Chemical Sensors, R. E. Shaffer, R. A. Potyrailo, eds., Proc. SPIE3856, 44–56 (1999).
[CrossRef]

Bertie, J. E.

J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
[CrossRef]

Bittner, H.

Blake, T. A.

Boreman, D. G.

E. L. Dereniak, D. G. Boreman, Infrared Detectors and Systems (Wiley-Interscience, New York, 1996), p. 528 ff.

Bradette, C.

J.-M. Thėriault, C. Bradette, L. Moreau, “Passive remote monitoring of chemical vapors with a Fourier transform infrared spectrometer,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 962–972 (2000).
[CrossRef]

Bradley, K. S.

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

Brooks, K. B.

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

Buijs, H.

Burrows, J. P.

Chackerian, C.

C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983).
[CrossRef]

Chaffin, C. T.

T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001).
[CrossRef]

Chang, S.-Y.

S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001).
[CrossRef]

Childers, J. W.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

G. M. Russwurm, J. W. Childers, “FT-IR open-path monitoring guidance document,” EPA/600/R-96/040 National Exposure Research Laboratory (U.S. Environmental Protection Agency, Washington, D.C., 1996).

Chu, P. M.

T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002).
[CrossRef] [PubMed]

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Clayton, M.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Coffey, M. T.

D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).

Combs, R. J.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

Counce, D.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

Daum, R.

A. Beil, R. Daum, T. J. Johnson, “Detection of chemical agents in the atmosphere by passive IR remote sensing,” in Internal Standardization and Calibration Architectures for Chemical Sensors, R. E. Shaffer, R. A. Potyrailo, eds., Proc. SPIE3856, 44–56 (1999).
[CrossRef]

Delgado, H.

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak, D. G. Boreman, Infrared Detectors and Systems (Wiley-Interscience, New York, 1996), p. 528 ff.

Ditillo, J. T.

G. W. Small, R. T. Kroutil, J. T. Ditillo, “Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms,” Anal. Chem. 60, 264–269 (1988).
[CrossRef] [PubMed]

Eisenmann, T.

Esler, M. B.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef] [PubMed]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
[CrossRef] [PubMed]

Flanigan, D. F.

Gartner, A. G.

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

Goff, F.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

Griffith, D. W. T.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
[CrossRef] [PubMed]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef] [PubMed]

D. W. T. Griffith, “Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra,” Appl. Spectrosc. 50, 59–70 (1996).
[CrossRef]

D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).

D. W. T. Griffith, I. M. Jamie, “Fourier transform infrared spectroscopy in atmospheric and trace gas analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000).

Guelachvili, G.

C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983).
[CrossRef]

Guenther, F. R.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Hall, J. L.

Harris, D. B.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Harris, G. W.

Haus, R.

Hausler, T.

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

Heise, H.-M.

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

Heland, J.

Herget, W. F.

Herr, K. C.

Howell, H. B.

Hubbard, L. K.

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

Jamie, I. M.

D. W. T. Griffith, I. M. Jamie, “Fourier transform infrared spectroscopy in atmospheric and trace gas analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000).

Johnson, J. B.

J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928).
[CrossRef]

Johnson, P. A.

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

Johnson, T. J.

T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002).
[CrossRef] [PubMed]

T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
[CrossRef] [PubMed]

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

A. Beil, R. Daum, T. J. Johnson, “Detection of chemical agents in the atmosphere by passive IR remote sensing,” in Internal Standardization and Calibration Architectures for Chemical Sensors, R. E. Shaffer, R. A. Potyrailo, eds., Proc. SPIE3856, 44–56 (1999).
[CrossRef]

T. J. Johnson, “Methods and systems for remote detection of gases,” U.S. patent application filed, 23April2003.

Kirchgessner, D. A.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Knapp, R. B.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

Ko, J. D.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

Kroutil, R. T.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

G. W. Small, R. T. Kroutil, J. T. Ditillo, “Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms,” Anal. Chem. 60, 264–269 (1988).
[CrossRef] [PubMed]

Lafferty, W. J.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

Laporte, D. D.

Lo, J.-G.

S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001).
[CrossRef]

Love, S. P.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

Maki, A. G.

A. G. Maki, J. S. Wells, Wavenumber Calibration Tables from Heterodyne Frequency Measurements, NIST Special Pub. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1991).

Mankin, W. G.

D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).

Marshall, T. L.

T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001).
[CrossRef]

Moreau, L.

J.-M. Thėriault, C. Bradette, L. Moreau, “Passive remote monitoring of chemical vapors with a Fourier transform infrared spectrometer,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 962–972 (2000).
[CrossRef]

Mosebach, H.

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

Moserbach, H.

Müller, U.

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

Natschke, D. F.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Obenholzner, J.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

Olson, K. B.

K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513–516 (1999).
[CrossRef] [PubMed]

Phillips, W. J.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Polak, M. L.

Popp, P. J.

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

Reid, F.

Revercomb, H. E.

Rhoderick, G. C.

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Riebau, A.

D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).

Roderick, G. C.

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

Roney, P. L.

Russwurm, G. M.

G. M. Russwurm, J. W. Childers, “FT-IR open-path monitoring guidance document,” EPA/600/R-96/040 National Exposure Research Laboratory (U.S. Environmental Protection Agency, Washington, D.C., 1996).

Sams, R. L.

T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

Schäfer, K.

Schmidt, S. C.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

Sharpe, S. W.

T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002).
[CrossRef] [PubMed]

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

Siebe, C.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

Small, G. W.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

G. W. Small, R. T. Kroutil, J. T. Ditillo, “Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms,” Anal. Chem. 60, 264–269 (1988).
[CrossRef] [PubMed]

Smith, W. L.

Sromovsky, L. A.

Stedman, D. H.

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

Steele, L. P.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
[CrossRef] [PubMed]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef] [PubMed]

Theriault, J.-M.

J.-M. Thėriault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform interferometer,” Appl. Opt. 38, 505–515 (1999).
[CrossRef]

P. L. Roney, F. Reid, J.-M. Thėriault, “Transmission window near 2400 cm-1: an experimental and modeling study,” Appl. Opt. 30, 1995–2004 (1991).
[CrossRef] [PubMed]

J.-M. Thėriault, C. Bradette, L. Moreau, “Passive remote monitoring of chemical vapors with a Fourier transform infrared spectrometer,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 962–972 (2000).
[CrossRef]

Thompson, E. L.

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Thorn, T. G.

T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001).
[CrossRef]

Tipping, R. H.

C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983).
[CrossRef]

Traynor, C. A.

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

Tso, T.-L.

S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001).
[CrossRef]

Ward, D. E.

D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).

Warren, R. G.

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

Wells, J. S.

A. G. Maki, J. S. Wells, Wavenumber Calibration Tables from Heterodyne Frequency Measurements, NIST Special Pub. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1991).

Whiteman, C. D.

C. D. Whiteman, Mountain Meteorology: Fundamentals and Applications (Oxford U. Press, Oxford, UK, 2000), pp. 212–216.

Wienhold, F. G.

Wilkinson, S.

S. Wilkinson, “DOE welcomes Hazmat spill research, training,” Chem. Eng. News 75(39), 34–35 (1997).
[CrossRef]

Wilson, S. R.

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
[CrossRef] [PubMed]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef] [PubMed]

Anal. Chem. (4)

G. W. Small, R. T. Kroutil, J. T. Ditillo, “Detection of atmospheric pollutants by direct analysis of passive Fourier transform infrared interferograms,” Anal. Chem. 60, 264–269 (1988).
[CrossRef] [PubMed]

A. S. Bangalore, G. W. Small, R. J. Combs, R. B. Knapp, R. T. Kroutil, C. A. Traynor, J. D. Ko, “Automated detection of trichloroethylene by Fourier transform infrared remote sensing measurements,” Anal. Chem. 69, 118–129 (1997), and references therein.
[CrossRef]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 1. Simultaneous analysis of CO2, CH4, N2O and CO in air,” Anal. Chem. 72, 206–215 (2000).
[CrossRef] [PubMed]

M. B. Esler, D. W. T. Griffith, S. R. Wilson, L. P. Steele, “Precision trace gas analysis by FT-IR spectroscopy. 2. The 13C/12C isotope ratio of CO2,” Anal. Chem. 72, 216–221 (2000).
[CrossRef] [PubMed]

Appl. Opt. (10)

P. L. Roney, F. Reid, J.-M. Thėriault, “Transmission window near 2400 cm-1: an experimental and modeling study,” Appl. Opt. 30, 1995–2004 (1991).
[CrossRef] [PubMed]

T. J. Johnson, F. G. Wienhold, J. P. Burrows, G. W. Harris, “Frequency modulation spectroscopy at 1.3 μm using InGaAsP lasers: a prototype field instrument for atmospheric chemistry research,” Appl. Opt. 30, 407–413 (1991).
[CrossRef] [PubMed]

M. L. Polak, J. L. Hall, K. C. Herr, “Passive Fourier-transform infrared spectroscopy of chemical plumes: an algorithm for quantitative interpretation and real-time background removal,” Appl. Opt. 34, 5406–5412 (1995).
[CrossRef] [PubMed]

J.-M. Thėriault, “Modeling the responsivity and self-emission of a double-beam Fourier-transform interferometer,” Appl. Opt. 38, 505–515 (1999).
[CrossRef]

T. J. Johnson, R. L. Sams, T. A. Blake, S. W. Sharpe, P. M. Chu, “Removing aperture-induced artifacts from Fourier transform infrared intensity values,” Appl. Opt. 41, 2831–2839 (2002).
[CrossRef] [PubMed]

D. F. Flanigan, “Detection of organic vapors with active and passive sensors: a comparison,” Appl. Opt. 25, 4253–4260 (1986).
[CrossRef] [PubMed]

W. F. Herget, “Remote and cross-stack measurement of stack gas concentrations using a mobile FT-IR system,” Appl. Opt. 21, 635–642 (1982).
[CrossRef] [PubMed]

D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of MODTRAN,” Appl. Opt. 35, 6090–6098 (1996).
[CrossRef] [PubMed]

R. Haus, K. Schäfer, W. Bautzer, J. Heland, H. Moserbach, H. Bittner, T. Eisenmann, “Mobile Fourier-transform infrared spectroscopy monitoring of air pollution,” Appl. Opt. 33, 5682–5689 (1994).
[CrossRef] [PubMed]

H. E. Revercomb, H. Buijs, H. B. Howell, D. D. Laporte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with high-resolution interferometer sounder,” Appl. Opt. 27, 3210–3218 (1988).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Atmos. Environ. (1)

J. W. Childers, E. L. Thompson, D. B. Harris, D. A. Kirchgessner, M. Clayton, D. F. Natschke, W. J. Phillips, “Multi-pollutant concentration measurements around a concentrated swine production facility using open-path FTIR spectrometry,” Atmos. Environ. 35, 1923–1936 (2001).
[CrossRef]

Chem. Eng. News (1)

S. Wilkinson, “DOE welcomes Hazmat spill research, training,” Chem. Eng. News 75(39), 34–35 (1997).
[CrossRef]

Chem. Geol. (1)

F. Goff, S. P. Love, R. G. Warren, D. Counce, J. Obenholzner, C. Siebe, S. C. Schmidt, “Passive infrared remote sensing evidence for large, intermittent CO2 emissions at Popocatėpetl volcano, Mexico,” Chem. Geol. 177, 133–156 (2001).
[CrossRef]

Emerg. Infect. Dis. (1)

K. B. Olson, “Aum Shinrikyo: once and future threat?” Emerg. Infect. Dis. 5, 513–516 (1999).
[CrossRef] [PubMed]

Environ. Sci. Technol. (1)

K. S. Bradley, K. B. Brooks, L. K. Hubbard, P. J. Popp, D. H. Stedman, “Motor vehicle fleet emission by OP-FTIR,” Environ. Sci. Technol. 34, 897–899 (2000).
[CrossRef]

Field Anal. Chem. Technol. (2)

T. G. Thorn, T. L. Marshall, C. T. Chaffin, “Open-path FTIR air monitoring of phosphine around large fumigated structures,” Field Anal. Chem. Technol. 5, 116–120 (2001).
[CrossRef]

U. Müller, H.-M. Heise, H. Mosebach, A. G. Gartner, T. Hausler, “Improved strategies for quantitative evaluation of atmospheric FTIR spectra obtained in open-path monitoring,” Field Anal. Chem. Technol. 3, 141–159 (1999).
[CrossRef]

J. Air Waste Manage. Assoc. (1)

S.-Y. Chang, T.-L. Tso, J.-G. Lo, “The nonlinearity and related band strength of carbon monoxide when applied in ambient air measurements using open long-path Fourier transform infrared spectroscopy,” J. Air Waste Manage. Assoc. 51, 1332–1338 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Chackerian, G. Guelachvili, R. H. Tipping, “CO 1-0 band isotopic lines as intensity standards,” J. Quant. Spectrosc. Radiat. Transfer 30, 107–112 (1983).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

P. M. Chu, F. R. Guenther, G. C. Rhoderick, W. J. Lafferty, “The NIST quantitative infrared database,” J. Res. Natl. Inst. Stand. Technol. 104, 59–81 (1999).
[CrossRef]

Nature (London) (1)

S. P. Love, F. Goff, D. Counce, C. Siebe, H. Delgado, “Passive infrared spectroscopy of the eruption plume at Popocatėpetl volcano, Mexico,” Nature (London) 396, 563–568 (1998).
[CrossRef]

Phys. Rev. (1)

J. B. Johnson, “Thermal agitation of electricity in conductors,” Phys. Rev. 32, 97–109 (1928).
[CrossRef]

Pure Appl. Chem. (1)

J. E. Bertie, “Specification of components, methods and parameters in Fourier transform spectroscopy by Michelson and related interferometers,” Pure Appl. Chem. 70, 2039–2045 (1998).
[CrossRef]

Other (14)

S. W. Sharpe, R. L. Sams, T. J. Johnson, P. M. Chu, G. C. Rhoderick, F. R. Guenther, “Creation of 0.10 cm-1 resolution, quantitative, infrared spectral libraries for gas samples,” in Vibrational Spectroscopy-based Sensor Systems, S. D. Christesen, A. J. Sedlacek, eds., Proc. SPIE4577, 12–24 (2001).
[CrossRef]

See the PNNL website http:://nwir.pnl.gov .

S. W. Sharpe, T. J. Johnson, R. L. Sams, P. M. Chu, G. C. Roderick, P. A. Johnson, “The NIST and PNNL gas-phase databases for quantitative infrared spectroscopy,” Appl. Spectrosc., submitted for publication.

R. Beer, Remote Sensing by Fourier Transform Spectroscopy (Wiley, New York, 1992).

T. J. Johnson, “Methods and systems for remote detection of gases,” U.S. patent application filed, 23April2003.

E. L. Dereniak, D. G. Boreman, Infrared Detectors and Systems (Wiley-Interscience, New York, 1996), p. 528 ff.

A. G. Maki, J. S. Wells, Wavenumber Calibration Tables from Heterodyne Frequency Measurements, NIST Special Pub. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1991).

C. D. Whiteman, Mountain Meteorology: Fundamentals and Applications (Oxford U. Press, Oxford, UK, 2000), pp. 212–216.

J.-M. Thėriault, C. Bradette, L. Moreau, “Passive remote monitoring of chemical vapors with a Fourier transform infrared spectrometer,” in Applications of Photonic Technology 4, R. A. Lessard, G. A. Lampropoulos, eds., Proc. SPIE4087, 962–972 (2000).
[CrossRef]

A. Beil, R. Daum, T. J. Johnson, “Detection of chemical agents in the atmosphere by passive IR remote sensing,” in Internal Standardization and Calibration Architectures for Chemical Sensors, R. E. Shaffer, R. A. Potyrailo, eds., Proc. SPIE3856, 44–56 (1999).
[CrossRef]

F. G. Smith, ed., Atmospheric Propagation of Radiation, Vol. 2 of The Infrared and Electro-Optical Systems Handbook, J. S. Accetta, D. L. Shumaker, eds., Vol. 10 of the SPIE Press Monographs (SPIE, Bellingham, Wash., 1983).

G. M. Russwurm, J. W. Childers, “FT-IR open-path monitoring guidance document,” EPA/600/R-96/040 National Exposure Research Laboratory (U.S. Environmental Protection Agency, Washington, D.C., 1996).

D. W. T. Griffith, I. M. Jamie, “Fourier transform infrared spectroscopy in atmospheric and trace gas analysis,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, Chichester, UK, 2000).

D. W. T. Griffith, W. G. Mankin, M. T. Coffey, D. E. Ward, A. Riebau, “FTIR remote sensing of biomass burning emissions of CO2, CO, CH4, CH2O, NO, NO2, NH3 and N2O,” in Global Biomass Burning, Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT, Cambridge, Mass., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic layout of the measurement configuration used to compare passive, active, and semiactive measurements. The view is from the top and configures the thermocouple array, griddle source, and active (sender) source as closely as possible.

Fig. 2
Fig. 2

Photograph of the manlift supporting the griddle, the thermocouple array, and the sender telescope. The green arrow indicates the length used to measure the downwind distance of the stack edge to the thermocouple array, which we varied by moving the manlift.

Fig. 3
Fig. 3

Intensity of IR signal measured by three different techniques. In the upper frame, each trace is a background spectrum, i.e., with no analyte gas flowing. The lower traces show the 2000–2300-cm-1 region, with the sample spectra (in black) recorded with 2500 ppmv of CO flowing from the stack. The red trace are the active data, the green are the semiactive, and the blue the sky or passive data. The CO-flowing spectra are offset for clarity.

Fig. 4
Fig. 4

Rendering of an average plume trajectory when the manlift was positioned 209.5 cm downwind from the release stack. Note that the plume traversed in front of both the griddle and the sender telescope and is centered near the third row of thermocouples (TC). Scale drawing.

Fig. 5
Fig. 5

Absorbance plots from the active technique of the three CO release segments, TL20, TL21, and TL22. These correspond to 10,000, 5000, and 2500-ppmv CO releases, respectively. The scales were not changed, but the spectra are vertically offset for clarity. The measured band strengths are in the ratio 9.1:4.7:2.5 (see text).

Fig. 6
Fig. 6

LWIR spectra recorded with the semiactive (top trace) and passive (bottom traces) techniques. The spectra are GR21 and GR19 for the semiactive techniques and SK21 and SK19 for the passive measurements. The reference (no analyte) spectra are also plotted. The SF6 peak can be seen at 948 cm-1 in both the semiactive and passive spectra.

Fig. 7
Fig. 7

Relative spectrometer response when viewing the passive and semiactive sources, i.e., the sky and griddle, respectively. Measurement conditions were identical and the y axis is the same for both. The inset shows the 1700–2700-cm-1 region expanded for clarity, with H2O and CO2 interfering absorptions noted on the plot.

Tables (2)

Tables Icon

Table 1 Experimental Parameters and Acquisition Sequence

Tables Icon

Table 2 Sensitivity Estimates for CO for Active, Passive, and Semiactive Remote Sensinga

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

L=BO1-τO+BBτO,
τO=L-BOBB-BO=exp-εcd.
Lν, T=Sν, T-bνmν.
Tν=hcνlnLν+2hc2ν3Lνk.
Δ2TΔT1-exp-εcd.
Δ2TΔTεcd.

Metrics