Abstract

We describe the use of linear Raman scattering for the investigation of fuel-rich sooting flames. In comparison, the frequency-tripled and -quadrupled fundamental wavelengths of a Nd:YAG laser have been used as an excitation source for study of the applicability of these laser wavelengths for analysis of sooting flames. The results obtained show that, for the investigation of strongly sooting flames, 266-nm excitation is better than 355-nm excitation. Although the entire fluorescence intensity of polycyclic aromatic hydrocarbons (PAHs) decreases with rising excitation wavelength, there is increased interference with the Raman signals by displacement of the spectral region of the Raman signals toward the fluorescence maximum of the laser-induced fluorescence emissions. Besides the broadband signals of PAHs, narrowband emissions of laser-produced C2 occur in the spectra of sooting flames and affect the Raman signals. These C2 emission bands are completely depolarized and can be separated by polarization-resolved detection. A comparison of the laser-induced fluorescence emissions of an ethylene flame with those of a methane flame shows the same spectral features, but the intensity of the emissions is larger by a factor of 5 for the ethylene fuel. Using 266-nm radiation for Raman signal excitation makes possible measurements in the ethylene flame also.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ledermann, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
    [CrossRef]
  2. A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
    [CrossRef]
  3. A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
    [CrossRef]
  4. R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
    [CrossRef]
  5. J. H. Kent, H. G. Wagner, “Warum russen Diffusionsflammen?” Erdöl Kohle 38, 543–549 (1985).
  6. F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
    [CrossRef]
  7. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  8. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef] [PubMed]
  9. R. J. Osborne, J. A. Wehrmeyer, R. W. Pitz, “A comparison of UV Raman and visible Raman techniques for measuring non-sooting partially premixed hydrocarbon flames,” paper AIAA 2000-0776 presented at the 38th Sciences Meeting and Exhibit, Reno, Nev., 10–13 January 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 1–11.
  10. E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
    [PubMed]
  11. E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
    [CrossRef] [PubMed]
  12. J. A. Wehrmeyer, T. S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
    [CrossRef] [PubMed]
  13. J. A. Shirley, “UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
    [CrossRef]
  14. R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990).
    [CrossRef] [PubMed]
  15. A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
    [CrossRef]
  16. R. S. Barlow, C. D. Carter, R. W. Pitz, “Multiscalar diagnostics in turbulent flames,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 384–407.
  17. A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Universität Bochum, Bochum, Germany, 1984).
  18. G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarisation properties,” Appl. Phys. B 61, 473–478 (1995).
    [CrossRef]
  19. A. Brockhinke, K. Kohse-Höinghaus, P. Andresen, “Double-pulse one-dimensional Raman-Rayleigh measurement for the detection of temporal and spatial structure in a turbulent H2-air diffusion flame,” Opt. Lett. 21, 2029–2031 (1996).
    [CrossRef] [PubMed]
  20. M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).
  21. F. Rabenstein, J. Egermann, A. Leipertz, N. D’Alfonso, “Vapor-phase structures of diesel-type fuel sprays: an experimental analysis,” in 1998 SAE International Fall Fuel and Lubricants Meeting and Exposition, San Francisco, Calif., 19–22 October 1988 (Society of Automotive Engineers, Warrendale, Pa. 15096), paper 982543.
  22. F. Rabenstein, A. Leipertz, “One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation,” Appl. Opt. 37, 4937–4943 (1998).
    [CrossRef]
  23. J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
    [CrossRef]
  24. A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).
  25. F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman Spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of Joint Meeting of the British and German Sections of the Combustion Institute (Combustion Institute, Cambridge, UK, 1993), pp. 255–258.
  26. W. Meier, O. Keck, “Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths,” Meas. Sci. Technol. 13, 741–749 (2002).
    [CrossRef]
  27. C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004).
    [CrossRef]
  28. G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N.J., 1966).
  29. G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1966).
  30. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  31. R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 252–286.
  32. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, New York, 1971).
  33. L. Petarca, F. Marconi, “Fluorescence spectra of polycyclic aromatic species in an n-heptane diffusion flame,” Combust. Flame 78, 308–325 (1989).
    [CrossRef]
  34. P.-E. Bengtsson, M. Alden, “Optical investigation of laser-produced C2 in premixed sooty ethylene flames,” Combust. Flame 80, 322–328 (1990).
    [CrossRef]
  35. W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981).
    [CrossRef]
  36. W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
    [CrossRef]
  37. P. E. Bengtsson, “On the use of laser techniques in the diagnostics of sooting flames,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1991).
  38. S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
    [CrossRef]
  39. M. Alden, P. E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
    [CrossRef] [PubMed]
  40. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen-oxygen rotational coherent anti-Stokes Raman scattering for temperature to high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
    [CrossRef] [PubMed]
  41. G. Zikratov, F.-Y. Yueh, J. P. Singh, O. P. Norton, R. A. Kumar, R. L. Cook, “Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces,” Appl. Opt. 38, 1467–1475 (1999).
    [CrossRef]

2004 (1)

C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004).
[CrossRef]

2002 (1)

W. Meier, O. Keck, “Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths,” Meas. Sci. Technol. 13, 741–749 (2002).
[CrossRef]

1999 (1)

1998 (3)

1997 (2)

1996 (2)

A. Brockhinke, K. Kohse-Höinghaus, P. Andresen, “Double-pulse one-dimensional Raman-Rayleigh measurement for the detection of temporal and spatial structure in a turbulent H2-air diffusion flame,” Opt. Lett. 21, 2029–2031 (1996).
[CrossRef] [PubMed]

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

1995 (2)

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarisation properties,” Appl. Phys. B 61, 473–478 (1995).
[CrossRef]

1994 (2)

A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1993 (1)

1992 (1)

1990 (3)

J. A. Shirley, “UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[CrossRef]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990).
[CrossRef] [PubMed]

P.-E. Bengtsson, M. Alden, “Optical investigation of laser-produced C2 in premixed sooty ethylene flames,” Combust. Flame 80, 322–328 (1990).
[CrossRef]

1989 (2)

1987 (2)

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

1985 (2)

J. H. Kent, H. G. Wagner, “Warum russen Diffusionsflammen?” Erdöl Kohle 38, 543–549 (1985).

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

1982 (1)

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[CrossRef]

1981 (2)

W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981).
[CrossRef]

W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
[CrossRef]

1979 (1)

A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

1977 (1)

S. Ledermann, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Alden, M.

Andresen, P.

Bader, K.

Barbella, R.

A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).

Barlow, R. S.

R. S. Barlow, C. D. Carter, R. W. Pitz, “Multiscalar diagnostics in turbulent flames,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 384–407.

Bengtsson, P. E.

M. Alden, P. E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

P. E. Bengtsson, “On the use of laser techniques in the diagnostics of sooting flames,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1991).

Bengtsson, P.-E.

P.-E. Bengtsson, M. Alden, “Optical investigation of laser-produced C2 in premixed sooty ethylene flames,” Combust. Flame 80, 322–328 (1990).
[CrossRef]

Beretta, F.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Berlman, I. B.

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, New York, 1971).

Beushausen, V.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarisation properties,” Appl. Phys. B 61, 473–478 (1995).
[CrossRef]

Bilger, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Bonczyk, P. A.

A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Bowling, J. M.

Brockhinke, A.

Carter, C. D.

R. S. Barlow, C. D. Carter, R. W. Pitz, “Multiscalar diagnostics in turbulent flames,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 384–407.

Cheng, T. S.

Ciajolo, A.

A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).

Cincotti, V.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Cook, R. L.

Craig, B. B.

W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
[CrossRef]

Crosley, D. R.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

D’Alessio, A.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

D’Alfonso, N.

F. Rabenstein, J. Egermann, A. Leipertz, N. D’Alfonso, “Vapor-phase structures of diesel-type fuel sprays: an experimental analysis,” in 1998 SAE International Fall Fuel and Lubricants Meeting and Exposition, San Francisco, Calif., 19–22 October 1988 (Society of Automotive Engineers, Warrendale, Pa. 15096), paper 982543.

D’Anna, A.

A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).

Dibble, R. W.

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Dreyer, C.

C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Edner, H.

Egermann, J.

F. Rabenstein, J. Egermann, A. Leipertz, N. D’Alfonso, “Vapor-phase structures of diesel-type fuel sprays: an experimental analysis,” in 1998 SAE International Fall Fuel and Lubricants Meeting and Exposition, San Francisco, Calif., 19–22 October 1988 (Society of Automotive Engineers, Warrendale, Pa. 15096), paper 982543.

Eisenthal, K. B.

W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981).
[CrossRef]

Faust, W. L.

W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
[CrossRef]

Goldberg, L. S.

W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
[CrossRef]

Grünefeld, G.

G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarisation properties,” Appl. Phys. B 61, 473–478 (1995).
[CrossRef]

Hartlieb, A. T.

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

Hassel, E. P.

E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
[PubMed]

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman Spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of Joint Meeting of the British and German Sections of the Combustion Institute (Combustion Institute, Cambridge, UK, 1993), pp. 255–258.

Hentschel, W.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N.J., 1966).

G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1966).

Hetherington, W. M.

W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981).
[CrossRef]

Janicka, J.

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman Spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of Joint Meeting of the British and German Sections of the Combustion Institute (Combustion Institute, Cambridge, UK, 1993), pp. 255–258.

Jonuscheit, J.

Keck, O.

W. Meier, O. Keck, “Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths,” Meas. Sci. Technol. 13, 741–749 (2002).
[CrossRef]

Kent, J. H.

J. H. Kent, H. G. Wagner, “Warum russen Diffusionsflammen?” Erdöl Kohle 38, 543–549 (1985).

Knapp, M.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

Kohse-Höinghaus, K.

Korenowsky, G. M.

W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981).
[CrossRef]

Kröll, S.

Kumar, R. A.

Ledermann, S.

S. Ledermann, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

Leipertz, A.

Linne, M. A.

C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004).
[CrossRef]

Lipp, F.

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman Spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of Joint Meeting of the British and German Sections of the Combustion Institute (Combustion Institute, Cambridge, UK, 1993), pp. 255–258.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Luczak, A.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

Mallard, W. G.

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[CrossRef]

Manz, P.

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

Marconi, F.

L. Petarca, F. Marconi, “Fluorescence spectra of polycyclic aromatic species in an n-heptane diffusion flame,” Combust. Flame 78, 308–325 (1989).
[CrossRef]

Masri, A. R.

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Meier, W.

W. Meier, O. Keck, “Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths,” Meas. Sci. Technol. 13, 741–749 (2002).
[CrossRef]

Menna, P.

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

Miller, J. H.

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[CrossRef]

Nilsson, D.

Norton, O. P.

Osborne, R. J.

R. J. Osborne, J. A. Wehrmeyer, R. W. Pitz, “A comparison of UV Raman and visible Raman techniques for measuring non-sooting partially premixed hydrocarbon flames,” paper AIAA 2000-0776 presented at the 38th Sciences Meeting and Exhibit, Reno, Nev., 10–13 January 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 1–11.

Parker, T.

C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004).
[CrossRef]

Petarca, L.

L. Petarca, F. Marconi, “Fluorescence spectra of polycyclic aromatic species in an n-heptane diffusion flame,” Combust. Flame 78, 308–325 (1989).
[CrossRef]

Pitz, R. W.

J. A. Wehrmeyer, T. S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990).
[CrossRef] [PubMed]

R. S. Barlow, C. D. Carter, R. W. Pitz, “Multiscalar diagnostics in turbulent flames,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 384–407.

R. J. Osborne, J. A. Wehrmeyer, R. W. Pitz, “A comparison of UV Raman and visible Raman techniques for measuring non-sooting partially premixed hydrocarbon flames,” paper AIAA 2000-0776 presented at the 38th Sciences Meeting and Exhibit, Reno, Nev., 10–13 January 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 1–11.

Rabenstein, F.

F. Rabenstein, A. Leipertz, “One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation,” Appl. Opt. 37, 4937–4943 (1998).
[CrossRef]

F. Rabenstein, J. Egermann, A. Leipertz, N. D’Alfonso, “Vapor-phase structures of diesel-type fuel sprays: an experimental analysis,” in 1998 SAE International Fall Fuel and Lubricants Meeting and Exposition, San Francisco, Calif., 19–22 October 1988 (Society of Automotive Engineers, Warrendale, Pa. 15096), paper 982543.

Rothe, E. W.

Santoro, R. J.

R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 252–286.

Schenk, M.

Schraml, S.

Seeger, T.

Shaddix, C. R.

R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 252–286.

Shirley, J. A.

J. A. Shirley, “UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[CrossRef]

Singh, J. P.

Smyth, K. C.

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[CrossRef]

Thumann, A.

Tregrossi, A.

A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).

Vander Wal, R. L.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Vierdeck, J. F.

A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Wagner, H. G.

J. H. Kent, H. G. Wagner, “Warum russen Diffusionsflammen?” Erdöl Kohle 38, 543–549 (1985).

Wehrmeyer, J. A.

J. A. Wehrmeyer, T. S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990).
[CrossRef] [PubMed]

R. J. Osborne, J. A. Wehrmeyer, R. W. Pitz, “A comparison of UV Raman and visible Raman techniques for measuring non-sooting partially premixed hydrocarbon flames,” paper AIAA 2000-0776 presented at the 38th Sciences Meeting and Exhibit, Reno, Nev., 10–13 January 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 1–11.

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Weiss, R. G.

W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
[CrossRef]

Will, S.

Yueh, F.-Y.

Zikratov, G.

Appl. Opt. (9)

R. W. Pitz, J. A. Wehrmeyer, J. M. Bowling, T. S. Cheng, “Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame,” Appl. Opt. 29, 2325–2332 (1990).
[CrossRef] [PubMed]

J. A. Wehrmeyer, T. S. Cheng, R. W. Pitz, “Raman scattering measurements in flames using a tunable KrF excimer laser,” Appl. Opt. 31, 1495–1504 (1992).
[CrossRef] [PubMed]

E. P. Hassel, “Ultraviolet Raman-scattering measurements in flames by the use of a narrow-band XeCl excimer laser,” Appl. Opt. 32, 4058–4065 (1993).
[PubMed]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen-oxygen rotational coherent anti-Stokes Raman scattering for temperature to high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

F. Rabenstein, A. Leipertz, “One-dimensional, time-resolved Raman measurements in a sooting flame made with 355-nm excitation,” Appl. Opt. 37, 4937–4943 (1998).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipertz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

G. Zikratov, F.-Y. Yueh, J. P. Singh, O. P. Norton, R. A. Kumar, R. L. Cook, “Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces,” Appl. Opt. 38, 1467–1475 (1999).
[CrossRef]

E. W. Rothe, P. Andresen, “Application of tunable excimer lasers to combustion diagnostics: a review,” Appl. Opt. 36, 3971–4033 (1997).
[CrossRef] [PubMed]

M. Alden, P. E. Bengtsson, H. Edner, S. Kröll, D. Nilsson, “Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination,” Appl. Opt. 28, 3206–3219 (1989).
[CrossRef] [PubMed]

Appl. Phys. B (5)

C. Dreyer, T. Parker, M. A. Linne, “Raman scattering at 532 and 355 nm in atmospheric pressure propane-air flames, with and without liquid fuels,” Appl. Phys. B 79, 121–120 (2004).
[CrossRef]

J. A. Shirley, “UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser,” Appl. Phys. B 51, 45–48 (1990).
[CrossRef]

A. Brockhinke, A. T. Hartlieb, K. Kohse-Höinghaus, D. R. Crosley, “Tunable KrF laser-induced fluorescence of C2 in a sooting flame,” Appl. Phys. B 67, 659–665 (1998).
[CrossRef]

G. Grünefeld, V. Beushausen, P. Andresen, “Interference-free UV-laser-induced Raman and Rayleigh measurements in hydrocarbon combustion using polarisation properties,” Appl. Phys. B 61, 473–478 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Chem. Phys. Lett. (2)

W. M. Hetherington, G. M. Korenowsky, K. B. Eisenthal, “Picosecond CARS as a probe of the multiphoton photofragmentation of benzene,” Chem. Phys. Lett. 77, 275–279 (1981).
[CrossRef]

W. L. Faust, L. S. Goldberg, B. B. Craig, R. G. Weiss, “Time-resolved diatomic carbon Swan emission from short-pulse UV fragmentation of carbon monoxide: evidence for two diatomic carbon formation mechanisms,” Chem. Phys. Lett. 83, 265–269 (1981).
[CrossRef]

Combust. Flame (6)

L. Petarca, F. Marconi, “Fluorescence spectra of polycyclic aromatic species in an n-heptane diffusion flame,” Combust. Flame 78, 308–325 (1989).
[CrossRef]

P.-E. Bengtsson, M. Alden, “Optical investigation of laser-produced C2 in premixed sooty ethylene flames,” Combust. Flame 80, 322–328 (1990).
[CrossRef]

F. Beretta, V. Cincotti, A. D’Alessio, P. Menna, “Ultraviolet and visible fluorescence in the fuel pyrolysis regions of gaseous diffusion flames,” Combust. Flame 61, 211–218 (1985).
[CrossRef]

J. H. Miller, W. G. Mallard, K. C. Smyth, “The observation of laser-induced visible fluorescence in sooting diffusion flames,” Combust. Flame 47, 205–214 (1982).
[CrossRef]

A. R. Masri, R. W. Bilger, R. W. Dibble, “‘Fluorescence’ interference with Raman measurements in nonpremixed flames of methane,” Combust. Flame 68, 109–119 (1987).
[CrossRef]

R. W. Dibble, A. R. Masri, R. W. Bilger, “The spontaneous Raman scattering technique applied to nonpremixed flames of methane,” Combust. Flame 67, 189–206 (1987).
[CrossRef]

Erdöl Kohle (1)

J. H. Kent, H. G. Wagner, “Warum russen Diffusionsflammen?” Erdöl Kohle 38, 543–549 (1985).

Meas. Sci. Technol. (1)

W. Meier, O. Keck, “Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths,” Meas. Sci. Technol. 13, 741–749 (2002).
[CrossRef]

Opt. Lett. (2)

Proc. Combust. Inst. (2)

M. Knapp, A. Luczak, V. Beushausen, W. Hentschel, P. Manz, “Polarized separated spatially resolved single laser shot multispecies analysis in the combustion chamber of a realistic SI engine with a tunable KrF excimer laser,” Proc. Combust. Inst. 26, 2589–2596 (1996).

A. Ciajolo, A. D’Anna, R. Barbella, A. Tregrossi, “The formation of aromatic carbon in sooting ethylene flames,” Proc. Combust. Inst. 25, 679–685 (1994).

Prog. Energy Combust. Sci. (2)

S. Ledermann, “The use of laser Raman diagnostics in flow fields and combustion,” Prog. Energy Combust. Sci. 3, 1–34 (1977).
[CrossRef]

A. C. Eckbreth, P. A. Bonczyk, J. F. Vierdeck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combust. Sci. 5, 253–322 (1979).
[CrossRef]

Other (11)

R. S. Barlow, C. D. Carter, R. W. Pitz, “Multiscalar diagnostics in turbulent flames,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 384–407.

A. Leipertz, “Temperaturbestimmung in Gasen mittels linearer und nichtlinearer Raman-Prozesse,” Habilitation thesis (Universität Bochum, Bochum, Germany, 1984).

F. Lipp, E. P. Hassel, J. Janicka, “Comparison of UV Raman Spectroscopy with 248 nm and 308 nm for determination of flame temperature and concentrations,” in Proceedings of Joint Meeting of the British and German Sections of the Combustion Institute (Combustion Institute, Cambridge, UK, 1993), pp. 255–258.

R. J. Osborne, J. A. Wehrmeyer, R. W. Pitz, “A comparison of UV Raman and visible Raman techniques for measuring non-sooting partially premixed hydrocarbon flames,” paper AIAA 2000-0776 presented at the 38th Sciences Meeting and Exhibit, Reno, Nev., 10–13 January 2000 (American Institute for Aeronautics and Astronautics, Reston, Va., 2000), pp. 1–11.

P. E. Bengtsson, “On the use of laser techniques in the diagnostics of sooting flames,” Ph.D. dissertation (Lund Institute of Technology, Lund, Sweden, 1991).

G. Herzberg, Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules (Van Nostrand, Princeton, N.J., 1966).

G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, N.J., 1966).

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

R. J. Santoro, C. R. Shaddix, “Laser-induced incandescence,” in Applied Combustion Diagnostics, K. Kohse Höinghaus, J. B. Jeffries, eds. (Taylor Francis, London, 2002), pp. 252–286.

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, New York, 1971).

F. Rabenstein, J. Egermann, A. Leipertz, N. D’Alfonso, “Vapor-phase structures of diesel-type fuel sprays: an experimental analysis,” in 1998 SAE International Fall Fuel and Lubricants Meeting and Exposition, San Francisco, Calif., 19–22 October 1988 (Society of Automotive Engineers, Warrendale, Pa. 15096), paper 982543.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Fluorescence emissions after 266-nm excitation (4 × YAG) taken in a methane diffusion flame at four heights above the burner.

Fig. 2
Fig. 2

Fluorescence emissions after 355-nm excitation (3 × YAG) taken in a methane diffusion flame at four heights above the burner.

Fig. 3
Fig. 3

Raman spectra taken in a methane diffusion flame with 266-nm excitation at three heights above the burner.

Fig. 4
Fig. 4

Raman spectra taken in a methane diffusion flame with 355-nm excitation at three heights above the burner.

Fig. 5
Fig. 5

Resultant Raman spectrum after subtraction of the horizontal from the vertical polarization direction for 32-mm height and 266-nm excitation.

Fig. 6
Fig. 6

Resultant Raman spectrum after subtraction of the horizontal from the vertical polarization direction for 32-mm height and 355-nm excitation.

Fig. 7
Fig. 7

Two-dimensional imaging on the central plane of the flame of (a) the soot volume fraction (fv) and (b) the soot primary particle size and major concentration results from single-line measurements for CH4, O2, H2O, CO2, CO, H2, and C2H2. The temperature distribution is displayed in (j), which was calculated from the species concentration results. ppm, parts in 106.

Fig. 8
Fig. 8

Major concentration results summarized from the single-line measurements of the central plane of the flame for H2O, CO2, and H2 for 355-nm excitation.

Fig. 9
Fig. 9

Comparison of the radial temperature profiles determined by Raman scattering with 266-nm excitation and rotational coherent anti-Stokes Raman spectroscopy (Rot.-CARS) in a methane diffusion flame at 28-mm height.

Fig. 10
Fig. 10

Fluorescence emissions for a diffusion flame at 28-mm height for methane and ethylene.

Fig. 11
Fig. 11

Raman spectra taken in an ethylene diffusion flame with 266-nm excitation at three heights above the burner.

Fig. 12
Fig. 12

Raman spectrum after subtraction of the horizontal from the vertical polarization direction for 16-mm height and 266-nm excitation in the ethylene diffusion flame.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔvR=Tv, J-Tv, J.
Tv, J=ωev+½-ωexev+½2++Be-αev+½+JJ+1-De+βev+½J2J+12+.
I=kΩ σΩ nlI0.
σΩ=Cgiv0-ΔvR4ΔvR1-exp-hcΔvR/kTai2+445γi2.
σΩ=Cgiv0-ΔvR4ΔvR1-exp-hcΔvR/kT×115γi2.

Metrics