Abstract

A new algorithm for the retrieval of columnar water vapor content is presented. The proposed procedure computes the area of the H2O absorption centered about 940 nm to allow its integrated columnar abundance as well as its density at ground level to be assessed. The procedure utilizes the HITRAN 2000 database as the source of H2O cross-section spectra. Experimental results were derived from radiometrically calibrated hyperspectral images collected by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor over the Cuprite mining district in Nevada. Numerical simulations based on the MODTRAN 4 radiative transfer code were also employed for investigating the algorithm’s performance. An additional empirical H2O retrieval procedure was tested by use of data gathered by the VIRS-200 imaging spectrometer.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
    [CrossRef]
  2. W. P. Elliotad, J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
    [CrossRef]
  3. J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
    [CrossRef]
  4. V. Carrere, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—sensitivity analysis and application to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” Remote Sens. Environ 44, 179–204 (1993).
    [CrossRef]
  5. R. Bennartz, J. Fischer, “Retrieval of columnar water vapor over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer,” Remote Sens. Environ. 78, 274–283 (2001).
    [CrossRef]
  6. E. B. Knipling, “Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation,” Remote Sens. Environ. 1, 155–159 (1970).
    [CrossRef]
  7. B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
    [CrossRef]
  8. Y. J. Kaufman, B. C. Gao, “Remote sensing of water vapor in the nearer IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
    [CrossRef]
  9. G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.
  10. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
    [CrossRef]
  11. W. Malkmus, “Random Lorentz band model with exponential-tailed S-1 line intensity distribution function,” J. Opt. Soc. Am. 57, 323–329 (1967).
    [CrossRef]
  12. S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.
  13. M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
    [CrossRef]
  14. S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102, 17069–17079 (1997).
    [CrossRef]
  15. M. E. Thomas, R. J. Nordstrom, “Line shape model for describing infrared absorption by water vapor,” Appl. Opt. 24, 3526–3530 (1985).
    [CrossRef] [PubMed]
  16. C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974).
    [CrossRef]
  17. C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
    [CrossRef]
  18. M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
    [CrossRef]
  19. W. B. Grant, “Water vapor absorption coefficient in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  20. Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
    [CrossRef]
  21. Q. Ma, R. H. Tipping, “The atmospheric water vapor continuum in the infrared: extension of the statistical theory of Rosenkranz,” J. Chem. Phys. 93, 7066–7075 (1990).
    [CrossRef]
  22. Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water continuum absorption in the infrared region. I,” J. Chem. Phys. 95, 6290–6301 (1991).
    [CrossRef]
  23. Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water vibrational bands. II,” J. Chem. Phys. 96, 8655–8663 (1992).
    [CrossRef]
  24. Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III,” J. Chem. Phys. 97, 818–828 (1992).
    [CrossRef]
  25. K. K. Lehmann, A. M. Smith, “Where does overtone intensity come from?” J. Chem. Phys. 93, 6140–6147 (1990).
    [CrossRef]
  26. I. J. Barton, “Infrared continuum water vapor absorption coefficients derived from satellite data,” Appl. Opt. 30, 2929–2934 (1991).
    [CrossRef] [PubMed]
  27. M. E. Thomas, “Infrared- and millimeter wavelength continuum absorption in the atmospheric windows: measurements and models,” Infrared Phys. 30, 161–174 (1990).
    [CrossRef]
  28. R. E. Roberts, J. E. A. Selby, L. M. Biberman, “Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window,” Appl. Opt. 15, 2085–2090 (1978).
    [CrossRef]
  29. P. Chylek, D. J. W. Geldart, “Water vapor dimers and atmospheric absorption of electromagnetic radiation,” Geophys. Res. Lett. 24, 2015–2018 (1997).
    [CrossRef]
  30. D. R. Cutten, “Extension of water vapor continuum absorption to the 4.5–5.0 μm region,” Infrared Phys. 19, 663–667 (1979).
    [CrossRef]
  31. H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997).
    [CrossRef]
  32. J. S. Accetta, D. L. Shumsker, eds., The Infrared and Electro-Optical System Handbook (SPIE, Bellingham, Wash., (1993), Vols. 1–8.
  33. F. M. Henderson, A. J. Lewis, eds., Manual of Remote Sensing (American Society of Photogrammetry and Remote Sensing, Bethesda, Md., 1983), Vols. I and II.
  34. K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001).
    [CrossRef]
  35. S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
    [CrossRef]
  36. B.-C. Gao, Y. J. Kaufman, “Derivation of columnar atmospheric water vapor amount from MODIS near-IR channels,” presented at the International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 24–28 July 2000.
  37. A. Barducci, I. Pippi, “The airborne VIRS for monitoring of the environment,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 437–446 (1998).
    [CrossRef]
  38. Officine Galileo, Radiometro Multispettrale VIRS 200, VIRS handbook (Officine Galileo, Florence, Italy, 1994).
  39. A. Barducci, I. Pippi, “Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth,” Appl. Opt. 40, 1464–1477 (2001).
    [CrossRef]

2003

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

2001

R. Bennartz, J. Fischer, “Retrieval of columnar water vapor over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer,” Remote Sens. Environ. 78, 274–283 (2001).
[CrossRef]

K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001).
[CrossRef]

A. Barducci, I. Pippi, “Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth,” Appl. Opt. 40, 1464–1477 (2001).
[CrossRef]

1998

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

1997

S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102, 17069–17079 (1997).
[CrossRef]

M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[CrossRef]

P. Chylek, D. J. W. Geldart, “Water vapor dimers and atmospheric absorption of electromagnetic radiation,” Geophys. Res. Lett. 24, 2015–2018 (1997).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997).
[CrossRef]

1994

S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
[CrossRef]

1993

V. Carrere, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—sensitivity analysis and application to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” Remote Sens. Environ 44, 179–204 (1993).
[CrossRef]

1992

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Y. J. Kaufman, B. C. Gao, “Remote sensing of water vapor in the nearer IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water vibrational bands. II,” J. Chem. Phys. 96, 8655–8663 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III,” J. Chem. Phys. 97, 818–828 (1992).
[CrossRef]

1991

W. P. Elliotad, J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water continuum absorption in the infrared region. I,” J. Chem. Phys. 95, 6290–6301 (1991).
[CrossRef]

I. J. Barton, “Infrared continuum water vapor absorption coefficients derived from satellite data,” Appl. Opt. 30, 2929–2934 (1991).
[CrossRef] [PubMed]

1990

W. B. Grant, “Water vapor absorption coefficient in the 8–13-μm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

K. K. Lehmann, A. M. Smith, “Where does overtone intensity come from?” J. Chem. Phys. 93, 6140–6147 (1990).
[CrossRef]

M. E. Thomas, “Infrared- and millimeter wavelength continuum absorption in the atmospheric windows: measurements and models,” Infrared Phys. 30, 161–174 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “The atmospheric water vapor continuum in the infrared: extension of the statistical theory of Rosenkranz,” J. Chem. Phys. 93, 7066–7075 (1990).
[CrossRef]

1985

1984

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

1979

D. R. Cutten, “Extension of water vapor continuum absorption to the 4.5–5.0 μm region,” Infrared Phys. 19, 663–667 (1979).
[CrossRef]

1978

1974

C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974).
[CrossRef]

1970

E. B. Knipling, “Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation,” Remote Sens. Environ. 1, 155–159 (1970).
[CrossRef]

1967

Abreu, L. W.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Ackerman, S. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102, 17069–17079 (1997).
[CrossRef]

Anderson, G. P.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Barducci, A.

A. Barducci, I. Pippi, “Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth,” Appl. Opt. 40, 1464–1477 (2001).
[CrossRef]

A. Barducci, I. Pippi, “The airborne VIRS for monitoring of the environment,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 437–446 (1998).
[CrossRef]

Barton, I. J.

Bennartz, R.

R. Bennartz, J. Fischer, “Retrieval of columnar water vapor over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer,” Remote Sens. Environ. 78, 274–283 (2001).
[CrossRef]

Biberman, L. M.

Brown, L. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Carrere, V.

V. Carrere, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—sensitivity analysis and application to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” Remote Sens. Environ 44, 179–204 (1993).
[CrossRef]

Chance, K. V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Chetwynd, J. H.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Chylek, P.

P. Chylek, D. J. W. Geldart, “Water vapor dimers and atmospheric absorption of electromagnetic radiation,” Geophys. Res. Lett. 24, 2015–2018 (1997).
[CrossRef]

Clough, S. A.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Conel, J. E.

V. Carrere, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—sensitivity analysis and application to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” Remote Sens. Environ 44, 179–204 (1993).
[CrossRef]

Cutten, D. R.

D. R. Cutten, “Extension of water vapor continuum absorption to the 4.5–5.0 μm region,” Infrared Phys. 19, 663–667 (1979).
[CrossRef]

Dalu, G.

C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974).
[CrossRef]

Dana, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Edwards, D. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
[CrossRef]

Elliotad, W. P.

W. P. Elliotad, J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

English, S. J.

S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
[CrossRef]

Fischer, J.

R. Bennartz, J. Fischer, “Retrieval of columnar water vapor over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer,” Remote Sens. Environ. 78, 274–283 (2001).
[CrossRef]

Flaud, J. M.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Foot, J. S.

C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
[CrossRef]

Gaffen, J.

W. P. Elliotad, J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

Gallery, W. O.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Gamach, R. R.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gao, B. C.

Y. J. Kaufman, B. C. Gao, “Remote sensing of water vapor in the nearer IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

Gao, B.-C.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

B.-C. Gao, Y. J. Kaufman, “Derivation of columnar atmospheric water vapor amount from MODIS near-IR channels,” presented at the International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 24–28 July 2000.

Geldart, D. J. W.

P. Chylek, D. J. W. Geldart, “Water vapor dimers and atmospheric absorption of electromagnetic radiation,” Geophys. Res. Lett. 24, 2015–2018 (1997).
[CrossRef]

Goetz, A. F. H.

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

Goldman, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Gordon, H. R.

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997).
[CrossRef]

Grant, W. B.

Guillou, C.

S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
[CrossRef]

Hall, L. A.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Hoke, M. L.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Hubanks, P. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Jones, D. C.

S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
[CrossRef]

Jucks, K. W.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Kaufman, Y. J.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Y. J. Kaufman, B. C. Gao, “Remote sensing of water vapor in the nearer IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

B.-C. Gao, Y. J. Kaufman, “Derivation of columnar atmospheric water vapor amount from MODIS near-IR channels,” presented at the International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 24–28 July 2000.

Khan, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[CrossRef]

Kilsby, C. G.

C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
[CrossRef]

Kimball, L. M.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

King, M. D.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Kirankumar, A. S.

K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001).
[CrossRef]

Kneizys, F. X.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Knipling, E. B.

E. B. Knipling, “Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation,” Remote Sens. Environ. 1, 155–159 (1970).
[CrossRef]

Kunde, V. G.

C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974).
[CrossRef]

Lehmann, K. K.

K. K. Lehmann, A. M. Smith, “Where does overtone intensity come from?” J. Chem. Phys. 93, 6140–6147 (1990).
[CrossRef]

Ma, Q.

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water vibrational bands. II,” J. Chem. Phys. 96, 8655–8663 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III,” J. Chem. Phys. 97, 818–828 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water continuum absorption in the infrared region. I,” J. Chem. Phys. 95, 6290–6301 (1991).
[CrossRef]

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “The atmospheric water vapor continuum in the infrared: extension of the statistical theory of Rosenkranz,” J. Chem. Phys. 93, 7066–7075 (1990).
[CrossRef]

Malkmus, W.

Mandin, J. Y.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mathew, K.

K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001).
[CrossRef]

McCann, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

McClatchey, R. A.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Menzel, W. P.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Messie, S. T.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[CrossRef]

Nagarini, C. M.

K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001).
[CrossRef]

Nemtchinov, V.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Nordstrom, R. J.

Perri, A.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Pincus, R.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Pippi, I.

A. Barducci, I. Pippi, “Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth,” Appl. Opt. 40, 1464–1477 (2001).
[CrossRef]

A. Barducci, I. Pippi, “The airborne VIRS for monitoring of the environment,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 437–446 (1998).
[CrossRef]

Platnick, S.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Prabhakara, C.

C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974).
[CrossRef]

Prigent, C.

S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
[CrossRef]

Remer, L. A.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

Reuter, D.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Rinsland, C. P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Roberts, R. E.

Rosenfield, J.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Rothman, L. S.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Saunders, R. W.

C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
[CrossRef]

Schroeder, J.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Selby, J. E. A.

R. E. Roberts, J. E. A. Selby, L. M. Biberman, “Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window,” Appl. Opt. 15, 2085–2090 (1978).
[CrossRef]

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Shettle, E. P.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Smith, A. M.

K. K. Lehmann, A. M. Smith, “Where does overtone intensity come from?” J. Chem. Phys. 93, 6140–6147 (1990).
[CrossRef]

Susskind, J.

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

Tanré, D.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Thomas, M. E.

M. E. Thomas, “Infrared- and millimeter wavelength continuum absorption in the atmospheric windows: measurements and models,” Infrared Phys. 30, 161–174 (1990).
[CrossRef]

M. E. Thomas, R. J. Nordstrom, “Line shape model for describing infrared absorption by water vapor,” Appl. Opt. 24, 3526–3530 (1985).
[CrossRef] [PubMed]

Tipping, R. H.

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III,” J. Chem. Phys. 97, 818–828 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water vibrational bands. II,” J. Chem. Phys. 96, 8655–8663 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water continuum absorption in the infrared region. I,” J. Chem. Phys. 95, 6290–6301 (1991).
[CrossRef]

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “The atmospheric water vapor continuum in the infrared: extension of the statistical theory of Rosenkranz,” J. Chem. Phys. 93, 7066–7075 (1990).
[CrossRef]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[CrossRef]

Varanasi, P.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Wang, J.

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

Wattson, R. B.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

West, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[CrossRef]

Worsham, R. D.

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Yoshino, K.

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Appl. Opt.

Bull. Am. Meteorol. Soc.

W. P. Elliotad, J. Gaffen, “On the utility of radiosonde humidity archives for climate studies,” Bull. Am. Meteorol. Soc. 72, 1507–1520 (1991).
[CrossRef]

Geophys. Res. Lett.

P. Chylek, D. J. W. Geldart, “Water vapor dimers and atmospheric absorption of electromagnetic radiation,” Geophys. Res. Lett. 24, 2015–2018 (1997).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

M. D. King, W. P. Menzel, Y. J. Kaufman, D. Tanré, B.-C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, P. A. Hubanks, “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Trans. Geosci. Remote Sens. 41, 442–458 (2003).
[CrossRef]

M. D. King, Y. J. Kaufman, W. P. Menzel, D. Tanré, “Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS),” IEEE Trans. Geosci. Remote Sens. 30, 2–27 (1992).
[CrossRef]

Y. J. Kaufman, B. C. Gao, “Remote sensing of water vapor in the nearer IR from EOS/MODIS,” IEEE Trans. Geosci. Remote Sens. 30, 871–884 (1992).
[CrossRef]

Infrared Phys.

D. R. Cutten, “Extension of water vapor continuum absorption to the 4.5–5.0 μm region,” Infrared Phys. 19, 663–667 (1979).
[CrossRef]

M. E. Thomas, “Infrared- and millimeter wavelength continuum absorption in the atmospheric windows: measurements and models,” Infrared Phys. 30, 161–174 (1990).
[CrossRef]

Int. J. Remote Sensing

K. Mathew, C. M. Nagarini, A. S. Kirankumar, “Split-window and multi-angle methods of sea surface temperature determination: an analysis,” Int. J. Remote Sensing 22, 3237–3251 (2001).
[CrossRef]

J. Chem. Phys.

Q. Ma, R. H. Tipping, “Water vapor continuum in the millimeter spectral region,” J. Chem. Phys. 93, 6127–6139 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “The atmospheric water vapor continuum in the infrared: extension of the statistical theory of Rosenkranz,” J. Chem. Phys. 93, 7066–7075 (1990).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water continuum absorption in the infrared region. I,” J. Chem. Phys. 95, 6290–6301 (1991).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the water vibrational bands. II,” J. Chem. Phys. 96, 8655–8663 (1992).
[CrossRef]

Q. Ma, R. H. Tipping, “A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III,” J. Chem. Phys. 97, 818–828 (1992).
[CrossRef]

K. K. Lehmann, A. M. Smith, “Where does overtone intensity come from?” J. Chem. Phys. 93, 6140–6147 (1990).
[CrossRef]

J. Geophys. Res.

M. I. Mishchenko, L. D. Travis, R. A. Khan, R. A. West, “Modeling phase function for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[CrossRef]

H. R. Gordon, “Atmospheric correction of ocean color imagery in the Earth Observing System era,” J. Geophys. Res. 102, 17081–17106 (1997).
[CrossRef]

S. A. Ackerman, “Remote sensing aerosols using satellite infrared observations,” J. Geophys. Res. 102, 17069–17079 (1997).
[CrossRef]

C. Prabhakara, G. Dalu, V. G. Kunde, “Estimation of sea surface temperature from remote sensing in the 11-to-13-μm window region,” J. Geophys. Res. 79, 5039–5045 (1974).
[CrossRef]

B. C. Gao, A. F. H. Goetz, “Column atmospheric water vapor and vegetation liquid water retrievals from airborne imaging spectrometer data,” J. Geophys. Res. 95, 3549–3564 (1990).
[CrossRef]

J. Susskind, J. Rosenfield, D. Reuter, “Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N,” J. Geophys. Res. 89, 4677–4697 (1984).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Messie, D. P. Edwards, J. M. Flaud, A. Perri, C. Camy-Peyret, V. Dana, J. Y. Mandin, J. Schroeder, A. McCann, R. R. Gamach, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998).
[CrossRef]

Q. J. R. Meteorol. Soc.

S. J. English, C. Guillou, C. Prigent, D. C. Jones, “Aircraft measurements of water vapor continuum absorption at millimetre wavelengths,” Q. J. R. Meteorol. Soc. 120, 603–625 (1994).
[CrossRef]

C. G. Kilsby, D. P. Edwards, R. W. Saunders, J. S. Foot, “Water-vapor continuum absorption in the tropics: aircraft measurements and model comparisons,” Q. J. R. Meteorol. Soc. 118, 715–748 (1992).
[CrossRef]

Remote Sens. Environ

V. Carrere, J. E. Conel, “Recovery of atmospheric water vapor total column abundance from imaging spectrometer data around 940 nm—sensitivity analysis and application to Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data,” Remote Sens. Environ 44, 179–204 (1993).
[CrossRef]

Remote Sens. Environ.

R. Bennartz, J. Fischer, “Retrieval of columnar water vapor over land from backscattered solar radiation using the Medium Resolution Imaging Spectrometer,” Remote Sens. Environ. 78, 274–283 (2001).
[CrossRef]

E. B. Knipling, “Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation,” Remote Sens. Environ. 1, 155–159 (1970).
[CrossRef]

Other

G. P. Anderson, F. X. Kneizys, J. H. Chetwynd, J. Wang, M. L. Hoke, L. S. Rothman, L. M. Kimball, R. A. McClatchey, E. P. Shettle, S. A. Clough, W. O. Gallery, L. W. Abreu, J. E. A. Selby, “fascode/modtran/lowtran: past/present/future,” presented at the 18th Annual Review Conference on Atmospheric Transmission Models, Hanscom Air Force Base, Mass., 6–8 June 1995.

J. S. Accetta, D. L. Shumsker, eds., The Infrared and Electro-Optical System Handbook (SPIE, Bellingham, Wash., (1993), Vols. 1–8.

F. M. Henderson, A. J. Lewis, eds., Manual of Remote Sensing (American Society of Photogrammetry and Remote Sensing, Bethesda, Md., 1983), Vols. I and II.

B.-C. Gao, Y. J. Kaufman, “Derivation of columnar atmospheric water vapor amount from MODIS near-IR channels,” presented at the International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 24–28 July 2000.

A. Barducci, I. Pippi, “The airborne VIRS for monitoring of the environment,” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, ed., Proc. SPIE3221, 437–446 (1998).
[CrossRef]

Officine Galileo, Radiometro Multispettrale VIRS 200, VIRS handbook (Officine Galileo, Florence, Italy, 1994).

S. A. Clough, F. X. Kneizys, G. P. Anderson, E. P. Shettle, J. H. Chetwynd, L. W. Abreu, L. A. Hall, R. D. Worsham, “FASCOD3: spectral simulation,” in Proceedings of International Radiation Symposium, Lille, France, 18–24 August 1988, J. Lenoble, J. F. Geleyn, eds. (Deepak, Hampton, Va., 1988), pp. 372–375.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Vertical atmospheric transmittance versus wavelength for three water vapor amounts (MODTRAN 4 simulations). The curves correspond to relative differences in the water vapor abundance amounts of 0.5, 1.0, and 2.0 with respect to the standard MODTRAN 4 value (corresponding to 1.46, 2.92, and 5.84 g cm-2, respectively). The simulation refers to a midlatitude summer atmosphere with a visibility of 20 km and a rural aerosol model. Note the presence of the O2 absorption band at 760 nm.

Fig. 2
Fig. 2

Detail of the vertical atmospheric transmittance of Fig. 1 in the wavelength range 700–1020 nm. The absorption band centered at 940 nm is most sensitive to changes in water vapor amount. Note the presence of the O2 absorption band located at 760 nm.

Fig. 3
Fig. 3

The basic idea of the proposed algorithm is to use residual line intensity η(λ) that corresponds to the water vapor absorption band centered at 940 nm. This value is used for estimating the line area by spectral integration. The line-area estimation requires knowledge of the ideal spectral radiance as dimmed by continuous absorption only, L c (λ, ϑ)Γ c (λ), at any λ within the line. This value is obtained by use of samples of the observed spectral radiance L s (λ, ϑ) near the wings of the line at a wavelength where line absorption becomes negligible. At least two samples, one on the blue flank and the other on the red flank, are selected to permit the fitting of an interpolation straight line. The interpolated radiance is then used as an estimate of continuum intensity. The straight line holds two nearby nonabsorption channels, and the curves with triangle symbols indicate a radiance spectrum simulated by a MODTRAN4 radiative transfer code for a standard midlatitude summer atmosphere for an observer at 1.5 km over the ground.

Fig. 4
Fig. 4

Typical cross-section spectrum for an H2O molecule, derived from the HITRAN 2000 database. The spectrum contains all single-line contributions that occur in the absorption band.

Fig. 5
Fig. 5

Flow diagram showing the main steps of the retrieval algorithm. Starting from radiometrically corrected data (spectral radiance), the 940-nm line area is computed according to Eq. (7) (see text). Then the line area is estimated from the theoretical expectation of expression (9); an H2O cross-section spectrum is introduced from the HITRAN 2000 database. Finally the two line areas are compared by numerical analysis and the vertically integrated water vapor abundance is computed.

Fig. 6
Fig. 6

AVIRIS image (gray-scale) utilized to test the algorithm. The image was collected on 25 June 1987 over the Cuprite mining district in southwest Nevada located at 37° 45′ N and 117° 6′ W.

Fig. 7
Fig. 7

Column water vapor image over the scene shown in Fig. 6. The image is presented in false colors: red indicates low-abundance areas (∼0.2 g cm-2); blue shows areas of greater abundance (∼0.9 g cm-2). Note that there is, below the water vapor abundance distribution, a memory effect that is due to the topographic scene. This behavior may be explained by noting that above higher (smaller) terrain features the light travels through a shorter (longer) atmospheric path with little (great) water vapor content, thus generating different estimations of the corresponding water vapor integrated abundance. This effect may be used to infer the elevation of the ground and, as a consequence, the height of the water vapor column.

Fig. 8
Fig. 8

(a) Horizontal profiles of water vapor abundance along the same line crossing the AVIRIS image as retrieved from the two algorithms. The two independent estimates show fair agreement. However, the water vapor columnar abundance estimates computed with the simple model (darker curve) are on average noisier and greater than those computed with the other method (lighter curve). (b) Corresponding traces of water vapor columnar abundance.

Fig. 9
Fig. 9

Behavior of water vapor abundance [g cm-2] with changing spectral ground radiance transmitted to the sensor at 20-km altitude. The simulations were performed with the MODTRAN 4 code and used a midlatitude summer geographic seasonal model with 20 km of visibility and rural extinction for several values of target albedo. The results show that the retrieved vertically integrated water vapor abundance values are rather independent of the surface albedo, and the observed maximum change is less than 1%.

Fig. 10
Fig. 10

Ratio of path radiance and at-sensor radiance without path radiance versus wavelength. The calculation was performed with the MODTRAN 4 code.

Fig. 11
Fig. 11

Spectral transmittance (dashed curve) retrieved from VIRS-200 measurement. Symbols indicate wavelength positions of the VIRS-200 channels. Note the location of the O2 absorption band at 688 nm. This spectrum was normalized to a continuum by introduction of two linear interpolations, the first VIRS-200 channels from 684.75 to 712.25 nm and the second from 712.25 to 744.75 nm. This spectrum is compared with total transmittance (solid curve) simulated with the MODTRAN 4 code for rural midlatitude winter atmosphere with 20-km visibility and for a vertical path length.

Tables (2)

Tables Icon

Table 1 Main Characteristics of the VIRS-200 Imaging Spectrometer

Tables Icon

Table 2 Spectral Configuration of the VIRS-200 Imaging Spectrometer

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

Lk= Lsλ, ϑSkλdλ =Lpathλ, ϑ+ρλ, ϑEλ, ζcos ϑπ×exp-τλsec ϑSkλdλ, k=1N,
Γλ, T=Γpλ, TΓeλ, TΓlλ, T=Γcλ, TΓlλ, T.
kcλ, T, e, p0=Cs0λ, Twe+p0-eβT;
Γlλ=exp-τλ, z,
τλ, z=0z βextλ, ξdξ=0z sλnξdξ,
Lsλ, ϑ=Lcλ, ϑΓcλΓlλ, ϑ.
ηλ=Lcλ, ϑΓcλ-Lsλ, ϑLcλ, ϑΓcλ=1-Γlλ, ϑ,
A=Δλ ηλdλ=Δκ1-exp-1πγ STξ×δκeξκ-κ02+δκeξ2 nξdξdκ.
STξπδκeξκ-κ02+δκeξ2
AΔκ1-expj=1M-SjπδκjN¯κj-κj02+δκj2dκ,
P=g1g0exp-ΔE10KTξ,
ΔH2O τH2Oλ, zdλΔH2O sH2Oλdλ γ1 nH2Oξdξ,
γ1 nH2Oξdξ=N¯H2Oγ1 fH2Oξdξ.
ΔO2 τO2λ, zdλΔO2 βO2λdλ γ1 nO2ξdξ=N¯O2ΔO2 βO2λdλ γ1 fO2ξdξ.
φmis=ΔH2O τH2Oλ, zdλΔO2 τO2λ, zdλ=N¯H2OmisΔH2O sH2Oλdλ γ1 fH2OξdξN¯O2ΔO2 sO2λdλ γ1fO2ξdξ.
φmod=ΔH2O τH2Oλ, zdλΔO2 τO2λ, zdλ=N¯H2OmodΔH2O βH2Oλdλ γ2 fH2OξdξN¯O2ΔO2 βO2λdλ γ2 fO2ξdξ.
φmisφmod=ΔH2O τH2Oλ, zdλΔO2 τO2λ, zdλ=N¯H2Omisγ1 fH2Oξdξ γ2 fO2ξdξN¯H2Omodγ2 fH2Oξdξ γ1 fO2ξdξ.
φmisφmodN¯H2OmisN¯H2Omod,
N¯H2Omis=N¯H2Omodφmisφmod.

Metrics