Abstract

We have developed an extended-cavity tunable diode laser system that has a small linewidth and a large output power (more than 90% of the free-running power) whose operating frequency can be conveniently locked to a transition line of Rb atoms. Based on flat-mirror feedback and frequency self-locking and with weak feedback, we have achieved a continuous frequency detuning range greater than 900 MHz and a short-time linewidth stability of better than 0.4%. By using a two-step locking procedure we not only can lock the laser frequency but also can detune the frequency to any desired value. The locking is quite sturdy and rugged.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Wieman, L. Hallberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). This is a review paper about diode lasers and atomic physics.
    [CrossRef]
  2. B. Dahmani, L. Hollberg, R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12, 876–878 (1987).
    [CrossRef] [PubMed]
  3. J. Mark, E. Bodtker, B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985).
    [CrossRef]
  4. W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
    [CrossRef]
  5. G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
    [CrossRef]
  6. S. Kobayashi, T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
    [CrossRef]
  7. I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
    [CrossRef]
  8. S. Saito, O. Nilsson, Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985).
    [CrossRef]
  9. M. Ohtsu, N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol. 6, 357–369 (1988).
    [CrossRef]
  10. F. Favre, L. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21, 1937–1946 (1985).
    [CrossRef]
  11. D. A. Shaddock, M. B. Gray, D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
    [CrossRef]
  12. S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970–4974 (2000).
    [CrossRef]
  13. M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
  14. A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
    [CrossRef]
  15. S. Jin, Y. Li, M. Xiao, “Single-mode diode laser with a large frequency-scanning range based on weak grating feedback,” Appl. Opt. 35, 1436–1441 (1996).
    [CrossRef] [PubMed]
  16. Throughout this paper we provide details of the commercial components that we have used so that the readers can easily duplicate our system if they wish. Components from other manufacturers may deliver similar or better performance.
  17. D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
    [CrossRef]
  18. B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2003).
  19. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998).
  20. H. Wang, D. J. Goorskey, M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
    [CrossRef] [PubMed]
  21. H. Wang, D. J. Goorskey, M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002).
    [CrossRef]
  22. A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
    [CrossRef]
  23. A. Joshi, M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
    [CrossRef] [PubMed]
  24. Available from S. Lee, http://laser.physics.sunysb.edu/s̃ellee/presentation2.pdf , 2001.

2003 (2)

A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[CrossRef]

A. Joshi, M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Wang, D. J. Goorskey, M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002).
[CrossRef]

2001 (1)

H. Wang, D. J. Goorskey, M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

2000 (3)

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970–4974 (2000).
[CrossRef]

1999 (1)

1998 (2)

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

1996 (1)

1991 (2)

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[CrossRef]

C. E. Wieman, L. Hallberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). This is a review paper about diode lasers and atomic physics.
[CrossRef]

1990 (1)

W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
[CrossRef]

1988 (1)

M. Ohtsu, N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol. 6, 357–369 (1988).
[CrossRef]

1987 (1)

1985 (3)

F. Favre, L. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21, 1937–1946 (1985).
[CrossRef]

S. Saito, O. Nilsson, Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985).
[CrossRef]

J. Mark, E. Bodtker, B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985).
[CrossRef]

1981 (1)

S. Kobayashi, T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

Arnold, A. S.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Baluschev, S.

Beausoleil, R. G.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[CrossRef]

Bianchini, G.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Bodtker, E.

J. Mark, E. Bodtker, B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985).
[CrossRef]

Boshier, M. G.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Bransden, B. H.

B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2003).

Brecha, R. J.

W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
[CrossRef]

Brown, A.

A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[CrossRef]

Campbell, C.

W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
[CrossRef]

Cancio, P.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Carasso, D.

Clifford, M. A.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).

Conroy, R. S.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).

Dahmani, B.

Davidson, N.

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998).

Dholakia, K.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).

Dieckmann, K.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Drullinger, R.

Favre, F.

F. Favre, L. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21, 1937–1946 (1985).
[CrossRef]

Friedman, N.

Goorskey, D. J.

H. Wang, D. J. Goorskey, M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002).
[CrossRef]

H. Wang, D. J. Goorskey, M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Gray, M. B.

Hallberg, L.

C. E. Wieman, L. Hallberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). This is a review paper about diode lasers and atomic physics.
[CrossRef]

Hjelme, D. R.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[CrossRef]

Hollberg, L.

Inguscio, M.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Jin, S.

Joachain, C. J.

B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2003).

Johns, B.

Joshi, A.

A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[CrossRef]

A. Joshi, M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef] [PubMed]

Khaykovich, L.

Kimble, H. J.

W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
[CrossRef]

Kimura, T.

S. Kobayashi, T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi, T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

Lancaster, G. P. T.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).

Le Guen, L.

F. Favre, L. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21, 1937–1946 (1985).
[CrossRef]

Lee, W. D.

W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
[CrossRef]

Li, Y.

Mark, J.

J. Mark, E. Bodtker, B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985).
[CrossRef]

McClelland, D. E.

Mickelson, A. R.

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[CrossRef]

Minardi, F.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Nilsson, O.

S. Saito, O. Nilsson, Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985).
[CrossRef]

Ohtsu, M.

M. Ohtsu, N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol. 6, 357–369 (1988).
[CrossRef]

Pavone, F. S.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Perrone, F.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Prevedelli, M.

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

Saito, S.

S. Saito, O. Nilsson, Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985).
[CrossRef]

Shaddock, D. A.

Shvarchuck, I.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Tabuchi, N.

M. Ohtsu, N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol. 6, 357–369 (1988).
[CrossRef]

Tromborg, B.

J. Mark, E. Bodtker, B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985).
[CrossRef]

Walraven, J. T. M.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Wang, H.

A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[CrossRef]

H. Wang, D. J. Goorskey, M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002).
[CrossRef]

H. Wang, D. J. Goorskey, M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Wieman, C. E.

C. E. Wieman, L. Hallberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). This is a review paper about diode lasers and atomic physics.
[CrossRef]

Wilson, J. S.

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Xiao, M.

A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[CrossRef]

A. Joshi, M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef] [PubMed]

H. Wang, D. J. Goorskey, M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002).
[CrossRef]

H. Wang, D. J. Goorskey, M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

S. Jin, Y. Li, M. Xiao, “Single-mode diode laser with a large frequency-scanning range based on weak grating feedback,” Appl. Opt. 35, 1436–1441 (1996).
[CrossRef] [PubMed]

Yamamoto, Y.

S. Saito, O. Nilsson, Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985).
[CrossRef]

Zielonkowski, M.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

G. Bianchini, P. Cancio, F. Minardi, F. S. Pavone, F. Perrone, M. Prevedelli, M. Inguscio, “Wide-bandwidth frequency locking of a 1083-nm extended-cavity DBR diode laser to a high-finesse Fabry-Pérot resonator,” Appl. Phys. B 66, 407–410 (1998).
[CrossRef]

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose-Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

S. Saito, O. Nilsson, Y. Yamamoto, “Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback technique,” Appl. Phys. Lett. 46, 3–5 (1985).
[CrossRef]

W. D. Lee, C. Campbell, R. J. Brecha, H. J. Kimble, “Frequency stabilization of an external-cavity diode laser,” Appl. Phys. Lett. 57, 2181–2183 (1990).
[CrossRef]

Electron. Lett. (1)

J. Mark, E. Bodtker, B. Tromborg, “Measurement of Rayleigh backscatter-induced linewidth reduction,” Electron. Lett. 21, 1008–1009 (1985).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. Kobayashi, T. Kimura, “Injection locking in AlGaAs semiconductor laser,” IEEE J. Quantum Electron. 17, 681–689 (1981).
[CrossRef]

F. Favre, L. Le Guen, “Spectral properties of a semiconductor laser coupled to a single mode fiber resonator,” IEEE J. Quantum Electron. 21, 1937–1946 (1985).
[CrossRef]

D. R. Hjelme, A. R. Mickelson, R. G. Beausoleil, “Semiconductor laser stabilization by external optical feedback,” IEEE J. Quantum Electron. 27, 352–372 (1991).
[CrossRef]

J. Lightwave Technol. (1)

M. Ohtsu, N. Tabuchi, “Electrical feedback and its network analysis for linewidth reduction of a semiconductor laser,” J. Lightwave Technol. 6, 357–369 (1988).
[CrossRef]

J. Mod. Opt. (1)

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, K. Dholakia, “Stabilization of an 852 nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).

Opt. Lett. (2)

Phys. Rev. A (2)

H. Wang, D. J. Goorskey, M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801 (2002).
[CrossRef]

A. Joshi, A. Brown, H. Wang, M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

A. Joshi, M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003).
[CrossRef] [PubMed]

H. Wang, D. J. Goorskey, M. Xiao, “Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system,” Phys. Rev. Lett. 87, 073601 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

C. E. Wieman, L. Hallberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). This is a review paper about diode lasers and atomic physics.
[CrossRef]

A. S. Arnold, J. S. Wilson, M. G. Boshier, “A simple extended-cavity diode laser,” Rev. Sci. Instrum. 69, 1236–1239 (1998).
[CrossRef]

Other (4)

B. H. Bransden, C. J. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice-Hall, Englewood Cliffs, N.J., 2003).

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, Englewood Cliffs, N.J., 1998).

Available from S. Lee, http://laser.physics.sunysb.edu/s̃ellee/presentation2.pdf , 2001.

Throughout this paper we provide details of the commercial components that we have used so that the readers can easily duplicate our system if they wish. Components from other manufacturers may deliver similar or better performance.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic diagram of the extended-cavity laser: PBS, polarization beam splitter; FR, Faraday rotator; PH, pinhole; LD, laser diode. (b) Frequency-locking circuit: HV Amp, high-voltage amplifier; FG, function generator; LIA, lock-in amplifier; p1, 10K potentiometer; k1–k3, toggle switches; other abbreviations defined in text.

Fig. 2
Fig. 2

(a) Linewidth measurement by a delayed self-homodyne technique. The curves represent the photocurrent power spectral density of a locked and an unlocked diode laser. Inset, instantaneous linewidth measured every 30 min for the locked and unlocked diode lasers.

Fig. 3
Fig. 3

(a) Saturated-absorption spectrum near the 87Rb 52 P 1/2, F′ = 2–52 S 1/2, F = 1 transition line. (b) Experimental results. Lower curve, response of the FP detector without locking; upper curve, response after locking.

Metrics