Abstract

A numerical model is used to investigate the dependence at 351 nm of desert-aerosol extinction and backscatter coefficients on particle imaginary refractive index (m i). Three ranges (-0.005 ≤ m i ≤ -0.001, -0.01 ≤ m i ≤ -0.001, and -0.02 ≤ m i ≤ -0.001) are considered, showing that backscatter coefficients are reduced as |m i| increases, whereas extinction coefficients are weakly dependent on m i. Numerical results are compared with extinction and backscatter coefficients retrieved by elastic Raman lidar measurements performed during Saharan dust storms over the Mediterranean Sea. The comparison indicates that a range of -0.01 to -0.001 can be representative of Saharan dust aerosols and that the nonsphericity of mineral particles must be considered.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. d’Almeida, “On the variability of desert-dust radiative characteristics,” J. Geophys. Res. 92, 3017–3026 (1987).
    [Crossref]
  2. J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
    [Crossref]
  3. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–654 (1984).
    [Crossref] [PubMed]
  4. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1044–1050 (1998).
    [Crossref]
  5. F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area, and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001); erratum, J. Geophys. Res. doi: 10.1029/2002 JD002340 (2002).
    [Crossref]
  6. M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
    [Crossref]
  7. F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
    [Crossref]
  8. E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977).
    [Crossref]
  9. Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980).
    [Crossref]
  10. J. B. Gillespie, J. D. Lindberg, “Seasonal and geographic variations in imaginary refractive index of atmospheric particulate matter,” Appl. Opt. 31, 2107–2115 (1992).
    [Crossref] [PubMed]
  11. Y. Sasano, E. V. Browell., “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observations,” Appl. Opt. 28, 1670–1679 (1989).
    [Crossref] [PubMed]
  12. P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
    [Crossref]
  13. I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelength,” J. Geophys. Res. 104, 9423–9444 (1999).
    [Crossref]
  14. J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.
  15. E. Molinaroli, “Mineralogical characterization of Saharan dust with a view to its final destination in Mediterranean sediments,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–162.
    [Crossref]
  16. A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997).
    [Crossref]
  17. S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997).
    [Crossref]
  18. A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
    [Crossref]
  19. E. Ganor, “The composition of clay minerals transported to Israel as indicators of Saharan dust emission,” Atmos. Environ. 25A, 2657–2664 (1991).
  20. E. Ganor, H. A. Foner, “The mineralogical and chemical properties and the behavior of Aeolian Saharan Dust over Israel,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), p. 24.
  21. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  22. A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
    [Crossref]
  23. I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
    [Crossref]
  24. F. De Tomasi, M. R. Perrone, “Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy,” J. Geophys. Res. 108, 14-1–14-12 (2003).
    [Crossref]
  25. F. De Tomasi, A. Blanco, M. R. Perrone, “Raman lidar monitoring of extinction and backscattering of Africa dust layers and dust characterization,” Appl. Opt. 42, 1699–1709 (2003).
    [Crossref] [PubMed]
  26. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).
  27. C. Kottmeier, B. Fay, “Trajectorics in the antartic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998).
    [Crossref]
  28. A. Stohl, “Computation, accuracy and application of trajectories — a review and bibliography,” Atmos. Environ. 32, 947–966 (1998).
    [Crossref]
  29. M. R. Perrone, F. De Tomasi, A. Tafuro, “Lidar ratios of Sahara dust aerosols,” submitted to Geophys. Res. Lett.

2004 (1)

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

2003 (3)

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

F. De Tomasi, M. R. Perrone, “Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy,” J. Geophys. Res. 108, 14-1–14-12 (2003).
[Crossref]

F. De Tomasi, A. Blanco, M. R. Perrone, “Raman lidar monitoring of extinction and backscattering of Africa dust layers and dust characterization,” Appl. Opt. 42, 1699–1709 (2003).
[Crossref] [PubMed]

2002 (3)

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
[Crossref]

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

2001 (2)

F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area, and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001); erratum, J. Geophys. Res. doi: 10.1029/2002 JD002340 (2002).
[Crossref]

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

1999 (1)

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelength,” J. Geophys. Res. 104, 9423–9444 (1999).
[Crossref]

1998 (3)

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1044–1050 (1998).
[Crossref]

C. Kottmeier, B. Fay, “Trajectorics in the antartic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998).
[Crossref]

A. Stohl, “Computation, accuracy and application of trajectories — a review and bibliography,” Atmos. Environ. 32, 947–966 (1998).
[Crossref]

1997 (3)

M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[Crossref]

A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997).
[Crossref]

S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997).
[Crossref]

1992 (1)

1991 (1)

E. Ganor, “The composition of clay minerals transported to Israel as indicators of Saharan dust emission,” Atmos. Environ. 25A, 2657–2664 (1991).

1989 (1)

1987 (1)

G. A. d’Almeida, “On the variability of desert-dust radiative characteristics,” J. Geophys. Res. 92, 3017–3026 (1987).
[Crossref]

1984 (1)

1980 (1)

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980).
[Crossref]

1977 (1)

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977).
[Crossref]

Ackermann, J.

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1044–1050 (1998).
[Crossref]

Alarcòn, M.

A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997).
[Crossref]

Althausen, D.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

Ansmann, A.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Avila, A.

A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997).
[Crossref]

Baldasano, J.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Balis, D.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Barnaba, F.

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area, and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001); erratum, J. Geophys. Res. doi: 10.1029/2002 JD002340 (2002).
[Crossref]

Blanco, A.

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

F. De Tomasi, A. Blanco, M. R. Perrone, “Raman lidar monitoring of extinction and backscattering of Africa dust layers and dust characterization,” Appl. Opt. 42, 1699–1709 (2003).
[Crossref] [PubMed]

Böckmann, C.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bösenberg, J.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Browell, E. V.

Calpini, B.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Chaikovsky, A.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Chester, R.

S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997).
[Crossref]

Colarco, P. R.

P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
[Crossref]

d’Almeida, G. A.

G. A. d’Almeida, “On the variability of desert-dust radiative characteristics,” J. Geophys. Res. 92, 3017–3026 (1987).
[Crossref]

De Tomasi, F.

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

F. De Tomasi, M. R. Perrone, “Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy,” J. Geophys. Res. 108, 14-1–14-12 (2003).
[Crossref]

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

F. De Tomasi, A. Blanco, M. R. Perrone, “Raman lidar monitoring of extinction and backscattering of Africa dust layers and dust characterization,” Appl. Opt. 42, 1699–1709 (2003).
[Crossref] [PubMed]

M. R. Perrone, F. De Tomasi, A. Tafuro, “Lidar ratios of Sahara dust aerosols,” submitted to Geophys. Res. Lett.

Fay, B.

C. Kottmeier, B. Fay, “Trajectorics in the antartic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998).
[Crossref]

Fernald, F. G.

Filippo, E.

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

Flamant, P.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Foner, H. A.

E. Ganor, H. A. Foner, “The mineralogical and chemical properties and the behavior of Aeolian Saharan Dust over Israel,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), p. 24.

Ganor, E.

E. Ganor, “The composition of clay minerals transported to Israel as indicators of Saharan dust emission,” Atmos. Environ. 25A, 2657–2664 (1991).

E. Ganor, H. A. Foner, “The mineralogical and chemical properties and the behavior of Aeolian Saharan Dust over Israel,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), p. 24.

Gill, T. E.

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

Gillespie, J. B.

Gillette, D. A.

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977).
[Crossref]

Ginoux, P.

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

Gobbi, G. P.

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area, and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001); erratum, J. Geophys. Res. doi: 10.1029/2002 JD002340 (2002).
[Crossref]

Guerzoni, S.

S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997).
[Crossref]

Hågård, A.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Herber, A.

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Joseph, J. H.

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980).
[Crossref]

Kahn, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[Crossref]

Kottmeier, C.

C. Kottmeier, B. Fay, “Trajectorics in the antartic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998).
[Crossref]

Levin, Z.

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980).
[Crossref]

Lindberg, J. D.

Manno, D.

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

Mattis, I.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

Mekler, Y.

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980).
[Crossref]

Mishchenko, M. I.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[Crossref]

Mitev, V.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Molinaroli, E.

S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997).
[Crossref]

E. Molinaroli, “Mineralogical characterization of Saharan dust with a view to its final destination in Mediterranean sediments,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–162.
[Crossref]

Muller, D.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

Nicholson, S. E.

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

Pandis, S. N.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

Papayannis, A.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Patterson, E. M.

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977).
[Crossref]

Pelon, J.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Perrone, M. R.

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

F. De Tomasi, M. R. Perrone, “Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy,” J. Geophys. Res. 108, 14-1–14-12 (2003).
[Crossref]

F. De Tomasi, A. Blanco, M. R. Perrone, “Raman lidar monitoring of extinction and backscattering of Africa dust layers and dust characterization,” Appl. Opt. 42, 1699–1709 (2003).
[Crossref] [PubMed]

M. R. Perrone, F. De Tomasi, A. Tafuro, “Lidar ratios of Sahara dust aerosols,” submitted to Geophys. Res. Lett.

Prospero, J. M.

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

Queralt-Mitjans, I.

A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997).
[Crossref]

Rasch, P. J.

P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
[Crossref]

Resendes, D.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Sasano, Y.

Schneider, J.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Seinfeld, J. H.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

Serra, A.

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

Sokolik, I. N.

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelength,” J. Geophys. Res. 104, 9423–9444 (1999).
[Crossref]

Spinelli, N.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Stockton, B. H.

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977).
[Crossref]

Stohl, A.

A. Stohl, “Computation, accuracy and application of trajectories — a review and bibliography,” Atmos. Environ. 32, 947–966 (1998).
[Crossref]

Tafuro, A.

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

M. R. Perrone, F. De Tomasi, A. Tafuro, “Lidar ratios of Sahara dust aerosols,” submitted to Geophys. Res. Lett.

Tafuro, A. M.

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

Tepore, A.

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

Toon, O. B.

P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
[Crossref]

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelength,” J. Geophys. Res. 104, 9423–9444 (1999).
[Crossref]

Torres, O.

P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
[Crossref]

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

Travis, L. D.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[Crossref]

Vaughan, T. T. G.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Visconti, G.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Wagner, F.

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

Wandinger, U.

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

West, R. A.

M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[Crossref]

Wiegner, M.

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

Appl. Opt. (4)

Atmos. Chem. Phys. (1)

A. Blanco, F. De Tomasi, E. Filippo, D. Manno, A. Serra, A. M. Tafuro, A. Tepore, “Characterization of African dust over southern Italy,” Atmos. Chem. Phys. 3, 1–13 (2003).
[Crossref]

Atmos. Environ. (2)

E. Ganor, “The composition of clay minerals transported to Israel as indicators of Saharan dust emission,” Atmos. Environ. 25A, 2657–2664 (1991).

A. Stohl, “Computation, accuracy and application of trajectories — a review and bibliography,” Atmos. Environ. 32, 947–966 (1998).
[Crossref]

Atmos. Res. (1)

F. Barnaba, F. De Tomasi, G. P. Gobbi, M. R. Perrone, A. Tafuro, “Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observation,” Atmos. Res. 70, 229–259 (2004).
[Crossref]

Deep-Sea Res. II (1)

S. Guerzoni, E. Molinaroli, R. Chester, “Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications,” Deep-Sea Res. II 44, 631–654 (1997).
[Crossref]

Geophys. Res. Lett. (1)

I. Mattis, A. Ansmann, D. Muller, U. Wandinger, D. Althausen, “Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust,” Geophys. Res. Lett. 29, 201–204 (2002).
[Crossref]

J. Atmos. Ocean. Technol. (1)

J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Ocean. Technol. 15, 1044–1050 (1998).
[Crossref]

J. Atmos. Sci. (1)

Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) dust—comparison of optical and direct sampling data,” J. Atmos. Sci. 37, 882–891 (1980).
[Crossref]

J. Geophys. Res. (10)

A. Avila, I. Queralt-Mitjans, M. Alarcòn, “Mineralogical composition of African dust delivered by red rains over the northeastern Spain,” J. Geophys. Res. 102, 21977–21996 (1997).
[Crossref]

A. Ansmann, F. Wagner, D. Althausen, D. Muller, A. Herber, U. Wandinger, “European Pollution Outbreaks during ACE 2. I. Alofted aerosol plumes observed with Raman lidar at the Portuguese coast,” J. Geophys. Res. 106, 20723–20733 (2001).
[Crossref]

F. De Tomasi, M. R. Perrone, “Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy,” J. Geophys. Res. 108, 14-1–14-12 (2003).
[Crossref]

C. Kottmeier, B. Fay, “Trajectorics in the antartic lower troposphere,” J. Geophys. Res. 105, 10947–10959 (1998).
[Crossref]

F. Barnaba, G. P. Gobbi, “Lidar estimation of tropospheric aerosol extinction, surface area, and volume: maritime and desert-dust cases,” J. Geophys. Res. 106, 3005–3018 (2001); erratum, J. Geophys. Res. doi: 10.1029/2002 JD002340 (2002).
[Crossref]

M. I. Mishchenko, L. D. Travis, R. A. Kahn, R. A. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831–16847 (1997).
[Crossref]

E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosol,” J. Geophys. Res. 82, 3153–3160 (1977).
[Crossref]

G. A. d’Almeida, “On the variability of desert-dust radiative characteristics,” J. Geophys. Res. 92, 3017–3026 (1987).
[Crossref]

P. R. Colarco, O. B. Toon, O. Torres, P. J. Rasch, “Determining the UV imaginary index of refraction of Saharan dust particles from TOMS data using a three dimensional model of dust transport,” J. Geophys. Res. 107, doi: 10.129/2001JD000903 (2002).
[Crossref]

I. N. Sokolik, O. B. Toon, “Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelength,” J. Geophys. Res. 104, 9423–9444 (1999).
[Crossref]

Rev. Geophys. (1)

J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, T. E. Gill, “Environmental characterization of global sources of atmospheric soil dust identified with Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product,” Rev. Geophys. 40, 2-1–2-31 (2002).
[Crossref]

Other (6)

J. Bösenberg, A. Ansmann, J. Baldasano, D. Balis, C. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hågård, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. T. G. Vaughan, G. Visconti, M. Wiegner, “EARLINET: a European aerosol research lidar network,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Ecole Polytechnique, Palaiseau, France, 2001), pp. 155–158.

E. Molinaroli, “Mineralogical characterization of Saharan dust with a view to its final destination in Mediterranean sediments,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 153–162.
[Crossref]

E. Ganor, H. A. Foner, “The mineralogical and chemical properties and the behavior of Aeolian Saharan Dust over Israel,” in The Impact of Desert Dust across the Mediterranean, S. Guerzoni, R. Chester, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), p. 24.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

M. R. Perrone, F. De Tomasi, A. Tafuro, “Lidar ratios of Sahara dust aerosols,” submitted to Geophys. Res. Lett.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics (Wiley, New York, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scatterplots of log αaer versus log βaer for spherical dust particles and for the three ranges shown. Filled circles, average values; error bars, the corresponding standard deviations. White lines, fitting curves by polynomial expressions (Table 3 below). Model relative errors to be associated with the extinction coefficient estimates are represented by open circles.

Fig. 2
Fig. 2

Scatterplots of aerosol extinction-to-backscatter ratios [sr] versus log βaer from model computations for spherical dust particles and for the three ranges shown. Filled circles, average values; error bars, the corresponding standard deviations. Model relative errors to be associated with extinction-to-backscatter ratios are represented by open circles.

Fig. 3
Fig. 3

Scatterplots of aerosol extinction-to-backscatter ratios [sr] versus log αaer from model computations for spherical dust particles and for the three ranges shown. Filled circles, average values; error bars, the corresponding standard deviations. Model relative errors to be associated with extinction-to-backscatter ratios are represented by open circles.

Fig. 4
Fig. 4

Scatterplots of (a) αaer versus m i , (b) βaer versus m i , and (c) S versus m i for spherical dust particles and for -0.02 ≤ m i ≤ -0.001. Filled circles, average values; error bars, the corresponding standard deviations.

Fig. 5
Fig. 5

Scatterplots of (a) αaer versus r 2, (b) βaer versus r 2, and (c) S versus r 2 for spherical dust particles and for -0.02 ≤ m i ≤ -0.001. Filled circles, average values; error bars, the corresponding standard deviations.

Fig. 6
Fig. 6

Scatterplots of extinction-versus-backscatter coefficients (filled circles) retrieved by Raman-lidar measurements and of extinction-versus-backscatter coefficients (small, lighter circles) obtained from numerical calculations for the ranges shown. DDs, spherical dust particles.

Fig. 7
Fig. 7

Numerical average extinction coefficients computed at 10 equally spaced bins of βaer within the 0.001–0.02 (km sr)-1 range versus the corresponding experimental average extinction coefficients by use of the numerical data obtained for spherical particles (DDs) and for the three ranges shown. Solid lines represent linear fits of the type 〈αDDsn〉 = η + γ 〈αexp〉.

Fig. 8
Fig. 8

Scatterplots of (a) log αaer versus log βaer and (b) of S-versus-log βaer for nonspherical dust particles and for -0.005 ≤ m i ≤ -0.001. Filled circles, average values; error bars, corresponding standard deviations. The white line in (a) represents the curve best fitted by a polynomial expression (Table 4). Open circles, relative errors.

Fig. 9
Fig. 9

Scatterplots of (a) log αaer versus log βaer and (b) S versus log βaer for nonspherical dust particles and for -0.01 ≤ m i ≤ -0.001. Filled circles, average values; error bars, the corresponding standard deviations. The white line in (a) represents the curve best fitted by a polynomial expression (Table 4). Open circles, relative errors.

Fig. 10
Fig. 10

Scatterplots of extinction-versus-backscatter coefficients (filled circles) retrieved by Raman-lidar measurements and of extinction-versus-backscatter coefficients (small, lighter circles) obtained from non-sphericity-corrected numerical calculations for the two ranges shown.

Fig. 11
Fig. 11

Numerical average extinction coefficients computed at 10 equally spaced bins of βaer within the 0.001–0.02 (km sr)-1 range versus the corresponding experimental average extinction coefficients by use of the non-sphericity-corrected model data obtained for the two ranges shown. Solid lines represent linear fits of the type 〈αDDsn〉 = η + γ 〈αexp〉. DDs, nonspherical dust particles

Tables (4)

Tables Icon

Table 1 Overall Variability in the Model for Desert Dust Aerosol Parametersa

Tables Icon

Table 2 Imaginary (mi) Refractive Indices at 350 nm of Some Minerals and Some Mixtures Made from Two Mineralsa

Tables Icon

Table 3 Parameters of Polynomial Fitsa and Correlation Coefficients (c2) for Spherical Desert Aerosols and for Three mi Variability Ranges

Tables Icon

Table 4 Parameters of the Linear Fitsa and Correlation Coefficients (c2) for Nonspherical Desert Aerosols and for Two mi Variability Ranges

Metrics